( 您好!臺灣時間:2021/07/27 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Isolation of Tumor Associated Cells from Pleural Effusions using Traveling Wave Dielectrophoresis
指導教授(外文):Hsien-Chang Chang
外文關鍵詞:dielectrophoresistraveling wave dielectrophoresissortingpleural effusions
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
Recently, personalized cancer treatment has been developed vigorously. For this reason, separation of tumor cells from clinical samples is very important for biomedical applications. There are some drawbacks in the current methods for tumor cell separation. In addition to being time-consuming, these methods usually require complicated operations and the resulting tumor cell samples often have low purity. A label-free, sensitive, portable bioassay kit is a demanding research goal for clinical diagnosis. Microfluidics and electrokinetics are the key techniques that are very suitable for the development of a miniaturized device. Based on this, we would like to utilize traveling wave dielectrophoresis (twDEP) theory to design a microfluidic separation chip for sorting the malignant pleural effusions. In our research, we first characterized cultured cancer cells in vitro and blood cells using DEP analysis and found that the DEP patterns are dramatically different. Similar results were found in malignant pleural effusions (MPE) derived cancer cells and immune cells. Cells sort based on traveling wave dielectrophoresis that provides the lateral displacements of specific sub-channels. A sorting efficiency and a recovery efficiency of approximately 95% and 85%were achieved. This device could be used to separate small single cancer cell, as well as large cancer clusters, from MPE effectively. This miniaturized separation device is expected to be used in clinical diagnosis in the future and to help personalized cancer treatment to achieve rapid separation and detection.
Abstract I
摘要 II
誌謝 III
Contents IV
List of Figures VI
List of Tables IX
Chapter1. Introduction 1
1.1 Background and Motivation 1
1.2 Conventional Separation 4
1.2.1 Centrifuge Method 4
1.2.2 Flow Cytometry 5
1.2.3 Immunomagnetic Separation 6
1.2.4 Biochemical Method 7
1.3 Micro-Electro-Mechanical Systems for Bio-Chip 8
1.4 Electrical Cell Manipulation Theory 9
1.4.1 Dielectrophoresis 9
1.4.2 Traveling Wave Dielectrophoresis 12
1.5 Literature Review of Traveling Wave Dielctrophoresis 15
1.6 Research Configuration 16
Chapter2. Materials and Methods 18
2.1. Chip Design and Construction 18
2.2. Instrument and System Configuration 19
2.2.1. Experiment Instrument 19
2.2.2. System Configuration 21
2.3. Maximum Through-Flow Linear Velocity Calculation 22
2.4. Chip Fabrication and Sample Preparation 23
2.4.1. Chip Fabrication 23
2.4.2. Sample Preparation 26
Chapter3. Results and Discussion 28
3.1. Dielectrophoretic Behavior on a Interdigitated Electrode Array 28
3.1.1. Dielectrophoretic Behavior of Cancer Cell Lines and Blood Cells 28
3.1.2. Dielectrophoretic Behavior of Malignant Pleural Effusion 32
3.2. Electrode Gap/Width Size on twDEP Electrode Array 35
3.3. Frequency and Voltage Conditions 37
3.4. Microfluidic Focusing 40
3.5. Cells Sorting for Lung Cancer Cell Lines and PBMC 41
3.6. Cells Sorting for Malignant Pleural Effusion 44
Chapter4. Conclusion 47
References 49

1.Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012 Jan-Feb;62:10-29.
2.Chiang CJ, Chen YC, Chen CJ, You SL, Lai MS; Taiwan Cancer Registry Task Force. Cancer trends in Taiwan. Jpn J Clin Oncol. 2010 Oct;40:897-904.
3.Spiro SG, Silvestri GA. One hundred years of lung cancer. Am J Respir Crit Care Med. 2005 Sep;172:523-529.
4.Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW, Su WP, Lin CH, Huang CY, Su WC. Malignant pleural effusion cells show aberrant glucose metabolism gene expression. Eur Respir J. 2011 Jun;37:1453-1465.
5.Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005 Jul;353:172-187.
6.Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004 May;350:2129-2139.
7.Uramoto H, Mitsudomi T. Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer? Br J Cancer. 2007 Mar;96:857-863.
8.Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007 Dec;450:1235-1239.
9.Wang S, Liu K, Liu J, Yu ZT, Xu X, Zhao L, Lee T, Lee EK, Reiss J, Lee YK, Chung LW, Huang J, Rettig M, Seligson D, Duraiswamy KN, Shen CK, Tseng HR. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl. 2011 Mar;50:3084-3088.
10.Minerick AR, Zhou R, Takhistov P, Chang HC. Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis. 2003 Nov;24:3703-3717.
11.Hughes MP. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 2002 Aug;23:2569-2582.
12.Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol. 1999 Nov;17:1109-1111.
13.Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990 Jul;11:231-238.
14.Daniel C. Harris, Exploring chemical analysis, second edition, 2000.
15.陳建人, 微機電系統技術與應用, 國科會精儀中心出版, 2004.
16.Manz A, Graber N, Widmer MH. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor Actuat B-Chem. 1990 Jan;1: 244-248.
17.Pohl HA. “Dielectrophoresis, Cambridge Uni. Press, 1978.
18.Li H, Bashir R. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sensor Actuat B-Chem. 2002 Sep;86:215-212.
19.Gagnon Z, Chang HC. Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection. Electrophoresis. 2005 Oct;26:3725-3737.
20.Gordon JE, Gagnon Z, Chang HC. Dielectrophoretic discrimination of bovine red blood cell starvation age by buffer selection and membrane cross-linking. Biomicrofluidics. 2007 Nov;1:44102-44105.
21.Gagnon Z, Senapati S, Gordon J, Chang HC. Dielectrophoretic detection and quantification of hybridized DNA molecules on nano-genetic particles. Electrophoresis. 2008 Dec;29:4808-4812.
22.Hagedorn R, Fuhr G, Müller T, Gimsa J. Traveling-wave dielectrophoresis of microparticles. Electrophoresis. 1992 Jan-Feb;13:49-54.
23.Wang XB, Huang Y, Becker FF and Gascoyne P. A unified theory of dielectrophoresis and traveling wave dielectrophoresis. J. Phys. D: Appl. Phys. 1994 May;27:1571-1574.
24.Masuda S, Washizu M, Iwadare M. Separation of small particles suspended in liquid by nonuniform raveling field. IEEE Trans. Ind.Appl.1987 Nov;23:474-480.
25.Masuda S, Washizu M, Kawabata I. Movement of blood cells in liquid by non-uniform traveling field. IEEE Trans. Ind. Appl.1988 Apr;24:217-222.
26.Fuhr G, Hagedorn R, Muller T. Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields. Proc. IEEE MEMS. 1991 Feb;42:259-264.
27.Huang Y, Wang XB, Tame JA, Pethig R. Electrokinetic behavior of colloidal particles in travelling electric fields: studies using yeast cells. J. Phys. D: Appl. Phys. 1993 Sep;26:1528-1535.
28.Talary MS, Burt JPH, Tame JA, Pethig R. Electromanipulation and separation of cells using travelling electric fields. J. Phys. D: Appl. Phys. 1996 Nov;29:2198-2203.
29.Cheng IF, Froude VE, Zhu Y, Chang HC, Chang HC. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip. 2009 Nov;9:3193-3201.
30.Lin CC, Huang WL, Su WP, Chen HH, Lai WW, Yan JJ, Su WC. Single cell phospho-specific flow cytometry can detect dynamic changes of phospho-Stat1 level in lung cancer cells. Cytometry A. 2010 Nov;77:1008-1019.
31.Huang WL, Yeh HH, Lin CC, Lai WW, Chang JY, Chang WT, Su WC. Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer. 2010 Dec;9:309-325.
32.Huang Y, Wang XB, Becker FF, Gascoyne PR. Membrane changes associated with the temperature-sensitive P85gag-mos-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta. 1996 Jun;1282:76-84.
33.Gascoyne P, Pethig R, Satayavivad J, Becker FF, Ruchirawat M. Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection. Biochim Biophys Acta. 1997 Jan;1323:240-252.
34.Wu J, Ben Y, Chang H-C. Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluid. 2005 Apr;1:161-167.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top