跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊博荃
研究生(外文):Boo-CyuanYang
論文名稱:比較眼球看三維空間與二維空間影片眼球運動的差異
論文名稱(外文):The Comparison of Eye Movements between Seeing Three-dimensional and Plane Images
指導教授:陳天送陳天送引用關係
指導教授(外文):Tain-Song Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:39
中文關鍵詞:三維空間立體電影眼球聚合運動眼球掃視運動
外文關鍵詞:three-dimensional stereoscopy movievergence eye movementsaccade eye movement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,隨著三維空間(3D)立體電影的推陳出新,我們接觸到3D電影的機會越來越高,當在看立體電影或影片的時候,受到3D立體刺激,很容易導致有不舒服的情況發生。在臨床上,會產生一些症狀,例如:暈眩、嘔吐更嚴重的情況甚至中風等等……而以上這些症狀和眼球運動有很大的關聯。
由於在看3D影片時,追視的物體移動的相當快,影片交換的頻率也相當高,眼球在遭受到這些刺激當中,瞳孔會變得異常的大,眼球聚合運動(Vergence)的響應次數也會增加; 隨著物體移動位置,眼球去追視物體,產生眼球掃視運動(Saccade)的時間比較短。
本論文中,採用的是NVidia GeForce 3D Vision 快門式的3D眼鏡,所搭配能夠產生3D影片的螢幕是Asus VG-236H。3D影片內容是模擬棒球軌跡,藉由受測者觀看3D影片時,由Skalar IRIS system透過紅外線定位的方式紀錄雙眼的位置,透過電壓的輸出與NI所生產的類比數位轉換器進行訊號的蒐集。藉此討論3D影片與眼球運動之間的關係。同樣的影片以平面的方式做播放,紀錄雙眼的位置,進一步探討3D影片與平面影片與眼球運動之間的差異。
受測者在看3D影片前,必須接受雙眼定位的校正,以確保雙眼能夠準確的做定位。校正包含了左右以及前後方向的校正,藉由電壓換算出角度,透過角度的差異換算出受測者與螢幕之間的距離是否正確。
受測者在接受校正完後,才開始看3D影片及平面影片。而結果在經過統計分析之後,我們可以發現到確實受測者在觀看3D影片時眼球所做的聚合以及掃視運動次數確實比看平面影片時來得多,然而,受測者眼球做微震顫的次數在看3D影片時也明顯的多出許多次。藉由此結果,我們可以推論在觀看3D影片時,過多的眼球掃視與聚合運動因為迫使雙眼移動更多的距離且會持續的產生震顫因此可能較容易導致雙眼的疲勞以及不舒適。

In recent years, the three-dimensional (3D) stereoscopy movies are innovated. We have more and more chance to accept 3D movies. When we watch three-dimensional movies or images, the stimuli lead us into an uncomfortable condition easily. And it may cause some clinical symptoms such as dizziness, binocular fatigue and even more serious to cause stroke. These symptoms have great relation with eyeballs.
The object moves very fast and image switching frequency is quite high while watching 3D movies. Therefore, as the eyes accept these stimuli, the pupil will become bigger and the times of vergence response will increase. The binocular chases the object as the object position changes. The results in eye saccade durations are short relatively.
In this study, the 3D shutter glasses are combined with compatible adopted for viewing stereoscopy stimuli and images. The content of the 3D image is designed for simulating the baseball locus.
Subjects are watching 3D movies and the Skalar IRIS system records the positions of binocular by the infrared simultaneously. The signals are collected through analog to digital converter, which is manufactured by National Instrument. Then we discuss the relationship between eye movement and 3D images with these results. The same image is demonstrated in a plane way. The positions of binocular are recorded at the same time. We discuss comparisons of eye movements between seeing 3D and plane images further.
Subjects have to accept binocular calibrations of position before view 3D images. Then we can ensure binocular positions accurately after calibrations. The calibrations include left-end and right-end and depth position calibrations. We figure out the angle after the voltage conversion. The distance between the screen and subjects is calculated through the angle difference.
Subjects start viewing 3D and plane images after the calibrations. We can find out that subjects do more times of vergence and saccade eye movements in viewing 3D images than plane images after results are collected. However, subjects also do more times of micro-tremor times in viewing 3D images. Through the recorded results we can hypothesize that binocular may feel fatigue and discomfort easily in viewing 3D images because binocular shifts more displacements and quivers persistently.

摘要 I
Abstract III
Contents VI
Figures VIII
Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 The structure of the eyeball 1
1.1.2 Visual transmission pathway 2
1.2 The concept of eye movement 4
1.2.1 The classification and of eye movements 4
1.2.2 Neural control in eye movements 6
1.3 Motivation 9
Chapter 2 Materials and Methods 10
2.1 Techniques for recording eye movements in clinical 10
2.1.1 Eletro-OculoGraphy (EOG) 10
2.1.2 Magnetic Search Coil Detection 11
2.1.3 Video-Oculography (VOG) 11
2.1.4 Infrared limbus reflection technique 12
2.2 Materials 13
2.3 Experimental Design 16
2.3.1 Subjects 16
2.3.2 Calibration of binocular 16
2.3.3 Experimental process 18
2.3.3 Data analysis 20
Chapter 3 Result 21
3.1 The calibration of binocular 21
3.2 The left-end and right-end calibration of binocular 21
3.3 The depth calibration of binocular 28
3.4 The three-dimensional image of vergence eye movements of binocular 30
Chapter 4 Discussion and conclusion 35
Reference 37

[1] M. R. Van Horn, K. E. Cullen, Dynamic Characterization of Agonist and Antagonist Oculomotoneurons During Conjugate and Disconjugate Eye Movements. Journal of Neurophysiology, Vol. 102, 2009.
[2] L. M. Jansen, Influence of 3D Natural Stimuli on Eye Movements and the Selection of Fixation Points. Publications of the Institute of Cognitive Science , Vol. 19, 2010.
[3] S. N. Yang, J. E. Sheedy, Effects of Vergence and Accommodative Responses on Viewer’s Comfort in Viewing 3D Stimuli. SPIE Digital Library, Vol. 7863, 2011
[4] S. C. Kim, K. C. Nam, W. S. Lee , and D. W. Kim, A new method for accurate and fast measurement of 3D eye movements. Medical Engineering & Physics, Vol. 28, 2006.
[5] M. M. J. Houben, J. Goumans, and J. V. D. Steen, Recording Three-Dimensional Eye Movements: Scleral Search Coils versus Video Oculography. Investigative Ophthalmology & Visual Science, Vol. 47, 2006.
[6] Institute of Vision and Optics: EUROTIMES Magazine, Vol. 17, Issue 5, 2012
[7] Computer Human Interaction conference: wearable EOG goggles, 2009
[8] Science Direct: Handbook of Clinical Neurophysiology, Vol. 9, 2010
[9] Forschung & Entwicklung: University of Applied Science, 2010
[10] S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, Evaluation of the monocular depth cue in 3D displays. Optic Express, Vol. 16, 2008
[11] Y. M. Kwon, and J. K. Shul, Experimental researches on gaze-based 3D interaction to stereo image display, Computer Science, Vol. 3942, 2006
[12] S. C. Kim, K. C. Nam, W. S. Lee , and D. W. Kim, A new method for accurate and fast measurement of 3D eye movements. Medical Engineering & Physics, Vol. 28, 2006
[13] O. A. Coubard, and Z. Kapoula, Inhibition of saccade and vergence eye
movements in 3D space. Journal of Vision, Vol. 5, 2005
[14] 李囿運,“以模型為基礎之轉斜眼球運動量化分析, 國立成功大學醫學工程研究所博士論文, 民國九十七年
[15] M. T. M. Lambooij, W. A. IJsselsteijn, I Heynderickx, Visual Discomfort in Stereoscopic Displays: A Review. SPIE-IS&T, Vol. 6490, 2007
[16] K Ukai, P. A. Howarth, Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays 29, 106-110, 2008
[17] S. Yano, M. Emoto, T. Mitsuhashi, Two factors in visual fatigue caused by stereoscopic HDTV images. Displays, Vol. 25 141–150, 2004
[18] Y. Y. Lee, K. J. Yang, T. Chen, T. L. Alvarez, Clinical Application of Vergence Eye Movement Recording System. 國立成功大學醫學工程研究所碩士論文, 民國九十九年
[19] S. K. Kim, D. W. Kim, Y. M. Kwon, J. Y. Son, Evaluation of the monocular depth cue in 3D displays. Optic Express, Vol. 16, 2008
[20] D. A. Usanov, A. P. Rytik, Device for Estimation of Personal Psychophysical State Using Analysis of Eye Movement. Biomedical Engineering, Vol. 43, 276-278, 2009
[21] H. Baba, S. Shimook, Three-dimensional analysis of dentist’s eye movements. Odontology, Vol. 92, 61-67, 2004
[22] G. A. Orban, P. Janssen, R. Vogels, Extracting 3D structure from disparity. TRENDS in Neurosciences, Vol. 29, 2006
[23] M. Emoto, Y. Nojiri, F. Okano, Changes in fusional vergence limit and its hysteresis after viewing stereoscopic TV. Displays, Vol. 25, 67-76, 2004
[24] E. C. Lee, H. Heo, K. R. Park, The Comparative Measurements of Eyestrain Caused by 2D and 3D Displays. IEEE Transactions on Consumer Electronics, Vol. 56, 2010
[25] M. M. J. Houben, J, Goumans, J. V. D. Steen, Recording three-dimensional eye movements: scleral search coils versus video oculography. Investigative Ophthalmology & Visual Science, Vol. 47, 179-187, 2006
[26] S. W. Shih, J. Liu, A Novel Approach to 3-D Gaze Tracking Using
Stereo Cameras. IEEE Transactions on Systems, Vol. 34, 1034-1044, 2004
[27] C. Filangieri, A. Li, Three-dimensional shape from second-order orientation flows. Vision Research 49, 1465-1471, 2009
[28] T. L. Alvarez, M. Bhavsar, J. L. Semmlow, M. T. Bergen, C. Pedrono, Short-term predictive changes in the dynamics of disparity vergence eye movements. Journal of Vision, 640-649, 2005
[29] T. L. Alvarez, J. L. Semmlow, W. Yuan, P. Munoz, Dynamic Details of Disparity Convergence Eye Movements. Annals of Biomedical Engineering, Vol. 27, 58-66, 1999
[30] M. R. Van Horn, K. E. Cullen, Dynamic Characterization of Agonist and Antagonist Oculomotoneurons During Conjugate and Disconjugate Eye Movements.
The American Physiological Society, Vol. 102, 28-40, 2009
[31] D. M. Hoffman, A. R. Girshick, K. A. Martin, S. Banks, Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, Vol. 33, 736-748, 2008

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top