跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠文
研究生(外文):Guan-WenChen
論文名稱:邊界條件對平面雙軸力學測試的影響並建構平面膠原蛋白凝膠的力學模型
論文名稱(外文):Effects of Boundary Conditions on Planar Biaxial Mechanical Testing and Modeling of the Mechanical Behavior of Planar Collagen Gels
指導教授:胡晉嘉
指導教授(外文):Jin-Jia Hu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:邊界條件有限元素模擬膠原蛋白凝膠本構方程式
外文關鍵詞:Boundary conditionFinite element modelingCollagen gelConstitutive model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究想建立膠原蛋白凝膠的本構模型對其結構的機械性質有更深的了解。為了得到本構模型中的物質參數,必須先對凝膠做機械測試。在實驗室先前的研究中,我們客製了一套平面雙軸力學測試系統量測膠原蛋白凝膠的機械性質,但我們仍對不同邊界條件影響雙軸力學測試結果的了解有限。因此利用有限元素模擬兩種固定方式和多種形狀的橡膠試片,探討邊界條件的影響。並以此為依據,對多種培養環境下的膠原蛋白凝膠做雙軸力學測試獲得實驗數據。之後再選用兩種已經廣泛使用來描述軟組織的本構模型,結合非線性迴歸求得材料參數。最後由本構模型來探討不同培養環境下膠原蛋白凝膠結構上機械性質的差異。結果發現,使用縫線拉伸能提供較大應變均勻面積,且不會限制側向試片的伸長,但膠原蛋白凝膠極弱的機械強度使我們不能採用縫線的固定方式。最後我們使用導圓角的試片形狀且用夾具拉伸,此形狀不會產生過大應力集中造成試片撕裂,且應變均勻面積在可接收範圍。Fung模型較能契合實驗數據且預測能力也比Lanir模型好,藉由計算材料剛性比的方式我們也可以得知材料是否為非等向性。最後,雖然Lanir模型契合的結果較差,但材料參數較具物理意義。
This thesis is composed of two parts. In the first part, we investigated the effects of specimen geometry on the apparent mechanical properties of cruciform-shaped specimens. In particular, finite element simulation was used to illustrate the distribution of strains, the uniformity of strain, and the failure indices on the specimen. The results were compared with our previous results that were based on digital image correlation and the associated deformation measurement. We found that if the square-shaped specimens were attached to the loading system by sutures the uniform-strain area was greatest and the stress in the central region where the strain is measured was most accurately measured. The limited suture retention strength of collagen gels, however, prohibits the use of suture attachment. Cruciform-shaped specimens with appropriate corner fillets was found to be the optimal geometry for the mechanical testing of collagen gels as it meets the failure indices and provides acceptable uniform-strain area in the central region of the specimen. In the second part, we used hyperelastic models to fit biaxial mechanical properties of collagen gels, which was determined in our previous study. Two models were tested: the Fung model and the Lanir model. In particular, the two models were used to model and compare mechanical properties of cell-seeded collagen gels cultured under a variety of mechanical constraints. We found that Fung model provides better fitting than Lanir model for most of gels. We examined the anisotropy of the tissues by calculating the ratio of material stiffness based on Fung model. Although the Lanir model was not as good in terms of fitting, its material parameters have physical meaning and has great potential to understand the underlying microstructure of the tissue.
中文摘要 i
Abstract ii
誌謝 iii
目錄 v
表目錄 vi
圖目錄 vii
符號 xiii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 邊界條件 2
1-2-2 本構方程式 4
1-3 研究動機與目的 5
第二章 材料與方法 6
2-1 邊界條件對力學測試結果的影響 6
2-1-1 用FEM模擬橡膠做雙軸力學測試 6
2-1-2 用FEM比較不同邊界條件對雙軸力學測試結果的影響 10
2-2 建構膠原蛋白凝膠的本構方程式 14
2-2-1 平面雙軸力學測試 14
2-2-2 本構方程式 14
第三章 結果 21
3-1 DIC和FEM結果比較 21
3-2 試片上最大等效應變和均勻應變面積 38
3-3 PMS和CS的差異 47
3-4 本構模型建立的情形 49
第四章 討論 71
第五章 結論 76
參考文獻 77
附錄 81

[1]J. D. Humphrey and S. L. Delange, An introduction to biomechanics : solids and fluids, analysis and design. New York: Springer-Verlag, 2004.
[2]J. J. Hu, J. D. Humphrey, and A. T. Yeh, Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy, Tissue Eng Part A, vol. 15, pp. 1553-64, Jul 2009.
[3]B. Xu, M. J. Chow, and Y. Zhang, Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment, Int J Biomater, vol. 2011, p. 172389, 2011.
[4]G. A. Holzapfel, Biomechanics of Soft Tissue, in Handbook of Material Behavior,Nonlinear Models and Properties, J. Lemaitre, Ed., ed, 2000, p. 7.
[5]J. D. Humphrey, P. B. Wells, S. Baek, J. J. Hu, K. McLeroy, and A. T. Yeh, A theoretically-motivated biaxial tissue culture system with intravital microscopy, Biomech Model Mechanobiol, vol. 7, pp. 323-34, Aug 2008.
[6]J. D. Humphrey, Cardiovascular solid mechanics : cells, tissues, and organs New York: Springer-Verlag, 2002.
[7]J. D. Humphrey, Review Paper: Continuum biomechanics of soft biological tissues, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 459, pp. 3-46, 2003.
[8]M. S. Sacks, Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive Model for Planar Collagenous Tissues, Journal of Biomechanical Engineering, vol. 125, p. 280, 2003.
[9]R. J. Lapeer, P. D. Gasson, and V. Karri, A hyperelastic finite-element model of human skin for interactive real-time surgical simulation, IEEE Trans Biomed Eng, vol. 58, pp. 1013-22, Apr 2011.
[10]X. Zhao, Y. Liu, W. Zhang, C. Wang, and G. S. Kassab, A novel arterial constitutive model in a commercial finite element package: Application to balloon angioplasty, J Theor Biol, vol. 286, pp. 92-9, Oct 7 2011.
[11]K. Miller, K. Chinzei, G. Orssengo, and P. Bednarz, Mechanical properties of brain tissue in-vivo: experiment and computer simulation, J Biomech, vol. 33, pp. 1369-76, Nov 2000.
[12]W. Zhang, C. Herrera, S. N. Atluri, and G. S. Kassab, Effect of Surrounding Tissue on Vessel Fluid and Solid Mechanics, Journal of Biomechanical Engineering, vol. 126, p. 760, 2004.
[13]Y. Lanir and Y. C. Fung, Two-dimensional mechanical properties of rabbit skin. I. Experimental system, J Biomech, vol. 7, pp. 29-34, Jan 1974.
[14]Y. Lanir and Y. C. Fung, Two-dimensional mechanical properties of rabbit skin. II. Experimental results, J Biomech, vol. 7, pp. 171-82, Mar 1974.
[15]M. S. Sacks and W. Sun, Multiaxial mechanical behavior of biological materials, Annu Rev Biomed Eng, vol. 5, pp. 251-84, 2003.
[16]W. Sun, M. S. Sacks, and M. J. Scott, Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues, Journal of Biomechanical Engineering, vol. 127, p. 709, 2005.
[17]M. Motamedi, M. Eskandari, and M. Yeganeh, Effect of straight and wavy carbon nanotube on the reinforcement modulus in nonlinear elastic matrix nanocomposites, Materials & Design, vol. 34, pp. 603-608, 2012.
[18]A. Eilaghi, J. G. Flanagan, G. W. Brodland, and C. R. Ethier, Strain uniformity in biaxial specimens is highly sensitive to attachment details, J Biomech Eng, vol. 131, p. 091003, Sep 2009.
[19]S. D. Waldman, M. S. Sacks, and J. M. Lee, Boundary conditions during biaxial testing of planar connective tissues Part II Fiber orientation, pp. 1215-1221, Aug 01 2002.
[20]S. D. Waldman and J. M. Lee, Boundary conditions during biaxial testing of planar connective tissues. Part 1: Dynamic Behavior, pp. 933-938, Oct 01 2002.
[21]S. D. Waldman and J. M. Lee, Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues, Biomaterials, vol. 26, pp. 7504-7513, 2005.
[22]Y. Hollander, D. Durban, X. Lu, G. S. Kassab, and Y. Lanir, Constitutive modeling of coronary arterial media--comparison of three model classes, J Biomech Eng, vol. 133, p. 061008, Jun 2011.
[23]G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability, J Biomech Eng, vol. 126, pp. 264-75, Apr 2004.
[24]R. W. Ogden, G. Saccomandi, and I. Sgura, Fitting hyperelastic models to experimental data, Computational Mechanics, vol. 34, pp. 484-502, 2004.
[25]V. Knezevic, A. J. Sim, T. K. Borg, and J. W. Holmes, Isotonic biaxial loading of fibroblast-populated collagen gels: a versatile, low-cost system for the study of mechanobiology, Biomech Model Mechanobiol, vol. 1, pp. 59-67, Jun 2002.
[26]A. E. Green and J. E. Adkins, Large Elastic Deformations. Oxford: Clarendon Press, 1970.
[27]Y. C. Fung, K. Fronek, and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression, Am J Physiol, vol. 237, pp. H620-31, Nov 1979.
[28]J. Hurtado and S. Govindarajan, Anisotropic hyperelastic models in Abaqus, in Constitutive Models for Rubber VI, ed: CRC Press, 2009, pp. 365-369.
[29]W. Sun and M. S. Sacks, Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues, Biomech Model Mechanobiol, vol. 4, pp. 190-9, Nov 2005.
[30]S. Federico, A. Grillo, G. Giaquinta, and W. Herzog, Convex Fung-type potentials for biological tissues, Meccanica, vol. 43, pp. 279-288, 2007.
[31]G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity, vol. 61, pp. 1-48, Jul 01 2000.
[32]Y. Lanir, Constitutive equations for fibrous connective tissues, J Biomech, vol. 16, pp. 1-12, 1983.
[33]A. Horowitz, Y. Lanir, F. C. Yin, M. Perl, I. Sheinman, and R. K. Strumpf, Structural three-dimensional constitutive law for the passive myocardium, J Biomech Eng, vol. 110, pp. 200-7, Aug 1988.
[34]H. J. Motulsky and L. A. Ransnas, Fitting curves to data using nonlinear regression: a practical and nonmathematical review, FASEB J, vol. 1, pp. 365-74, Nov 1987.
[35]J. D. Humphrey, R. K. Strumpf, and F. C. P. Yin, A Constitutive Theory for Biomembranes: Application to Epicardiai Mechanics, Journal of Biomechanical Engineering, vol. 114, 1992.
[36]E. Lamkanfi, W. Van Paepegem, J. Degrieck, C. Ramault, A. Makris, and D. Van Hemelrijck, Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 1: Two-dimensional versus three-dimensional finite element model, Polymer Testing, vol. 29, pp. 7-13, 2010.
[37]S. Thomopoulos, G. M. Fomovsky, P. L. Chandran, and J. W. Holmes, Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels, J Biomech Eng, vol. 129, pp. 642-50, Oct 2007.
[38]S. Thomopoulos, G. M. Fomovsky, and J. W. Holmes, The Development of Structural and Mechanical Anisotropy in Fibroblast Populated Collagen Gels, Journal of Biomechanical Engineering, vol. 127, p. 742, 2005.
[39]P. Tiernan and A. Hannon, Design optimisation of biaxial tensile test specimen using finite element analysis, International Journal of Material Forming, pp. 1-7.
[40]A. Makris, C. Ramault, D. Van Hemelrijck, D. Zarouchas, E. Lamkanfi, and W. Van Paepegem, An investigation of the mechanical behavior of carbon epoxy cross ply cruciform specimens under biaxial loading, Polymer Composites, vol. 31, pp. 1554-1561, 2010.
[41]A. Makris, C. Ramault, D. Van Hemelrijck, E. Lamkanfi, and W. Van Paepegem, Biaxial failure envelopes for glass fibre reinforced composite laminates, in SEM Annual Conference on Experimental and Applied Mechanics, Proceedings, 2009.
[42]S. E. Langdon, R. Chernecky, C. A. Pereira, D. Abdulla, and J. M. Lee, Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials, Biomaterials, vol. 20, pp. 137-53, Jan 1999.
[43]C. S. Jhun, M. C. Evans, V. H. Barocas, and R. T. Tranquillo, Planar biaxial mechanical behavior of bioartificial tissues possessing prescribed fiber alignment, J Biomech Eng, vol. 131, p. 081006, Aug 2009.
[44]W. Sun, M. S. Sacks, T. L. Sellaro, W. S. Slaughter, and M. J. Scott, Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-plane Shear, Journal of Biomechanical Engineering, vol. 125, p. 372, 2003.
[45]M. S. Sacks and C. J. Chuong, Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium, Transactions of the ASME, vol. 115, 1993.
[46]J. J. Hu, S. Baek, and J. D. Humphrey, Stress-strain behavior of the passive basilar artery in normotension and hypertension, J Biomech, vol. 40, pp. 2559-63, 2007.
[47]E. J. Lee, J. W. Holmes, and K. D. Costa, Remodeling of engineered tissue anisotropy in response to altered loading conditions, Ann Biomed Eng, vol. 36, pp. 1322-34, Aug 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top