跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃秋瑛
研究生(外文):Chiu-YingHuang
論文名稱:抑制CDK4和CDK5活性能模擬低溫療法避免MPP+ 造成的神經細胞粒線體斷裂和死亡
論文名稱(外文):CDK4 and CDK5 inhibition imitates cold exposure in the prevention of mitochondrial fission and neuron death after MPP+ treatment
指導教授:莊季瑛莊季瑛引用關係
指導教授(外文):Jih-Ing Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:62
中文關鍵詞:帕金森氏症粒線體細胞週期。
外文關鍵詞:Parkinson’s diseasemitochondrial dynamicfusionfissionDrp1OPA1Mfn2CDK4CDK5cyclinD1p27p35.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
過去的研究中發現,神經退化性疾病 (例如:帕金森氏症) 的最大特徵是神經細胞的死亡,而粒線體功能喪失是造成細胞死亡的主要原因之一。粒線體的型態呈現不停的融合及分裂的動態的變化,其中融合主要是靠粒線體上的mitofusion1/2 (Mfn1/2)和optic atrophy 1 (OPA1)調控,而當分布於細胞質中的dynamin-related GTPase (Drp1)移至粒線體的外膜上和fission 1 protein (Fis1)進行交互作用則是調控粒線體分裂的主要機制。我們實驗室的初步結果指出MPP+ (抑制粒線體內膜電子傳遞鏈上 complex I 的活性並且經常用於誘發帕金森氏症實驗模式的藥物)會促進Drp1所導致的粒線體斷裂以及後續的細胞死亡情形。另一方面,我們也發現低溫處理可以有效地保護神經細胞免於MPP+的毒性以及降低cyclin-dependent kinases (CDKs)的表現量,使細胞週期延長。此外,文獻指出細胞處在不同細胞週期,粒線體會呈現不同的型態,而且在細胞凋亡的過程中,CDK5扮演調控粒線體斷裂的角色。因此我們擬探討低溫保護神經免於MPP+的毒性是否藉由降低Drp1誘發的粒線體斷裂以及調控CDK4/5的表現量來達成。首先我們利用mitoDsRed轉染到SK-N-SH神經瘤細胞和大鼠的原代皮質神經元細胞,發現低溫處理(將細胞培養在32°C)有效地降低MPP+所造成的粒線體斷裂。另外,低溫處理也會造成CDK4和cyclinD1的下降以及p27和p35蛋白質表現量的上升,說明p27和p35參與在低溫所誘發的細胞週期暫停以及神經保護的機制中。我們也發現利用CDK4抑制劑和Roscovitine抑制CDK4/5的表現量可以模擬低溫處理,抑制MPP+所誘發的粒線體斷裂和神經細胞死亡。無論是低溫處理或者是抑制CDK4/5都會降低MPP+所誘發的粒線體上的Drp1和Mfn2的蛋白質表現量上升。這些研究結果證實低溫處理在MPP+ 誘發的帕金森氏症模式中,或許是藉由調控CDK4和CDK5的活性去抑制Drp1所造成的粒線體斷裂和細胞死亡。
Mitochondrial dysfunction is an early event of cell death in neurodegenerative diseases, such as Parkinson’s disease. Mitochondrial dynamic of fusion and fission is respectively controlled by the expression of mitofusion (Mfn) and dynamin-related GTPase (Drp1). Our preliminary results showed that a Drp1-dependent mitochondrial fission was related to neuron death in a 1-methyl-4-phenylpyridinium (MPP+)-induced parkinsonian model. We also found that cells cultured in 32°C (mild cold exposure) reduced MPP+-induced cell death and prolonged cell cycle, which were associated with a decreased expression of cyclin-dependent kinases (CDKs). Recent studies demonstrated that mitochondrial dynamic change at different stages of cell cycle, and CDK5 involved in the regulation of mitochondrial fission during neuron apoptosis. Herein, we investigated whether cold exposure protects neurons from MPP+ intoxication by reducing the Drp1-dependent mitochondrial fission and modulating the expression of CDK4/5. We found that cold exposure significantly reduced MPP+-induced mitochondrial fission in mitoDsRed-labeled human SK-N-SH cells and rat primary cortical neurons. Cold exposure induced downregulation of CDK4 and cyclinD1, as well as upregulation of p27 (CDK4 inhibitor) and p35 (CDK5 partner) protein expression, indicating that p27 and p35 involved in cold exposure-induced cell cycle arrest and neuroprotection. We also found that the inhibition of CDK4/5 by CDK4 inhibitor and roscovitine imitated the effect of cold exposure to inhibit MPP+-induced mitochondrial fission and neuron death. Cold exposure and inhibition of CDK4/5 attenuated MPP+-induced upregulation of mitochondrial Drp1 and Mfn2 protein expression in primary cortical neurons. The results reveal that cold exposure may regulate CDK4 and CDK5 activity to inhibit Drp1-associated mitochondrial fission and neuron death in MPP+-induced Parkinsonian model.
中文摘要....................................................1
Abstract...................................................2
誌謝.......................................................4
Contents..................................................6
Introduction.............................................10
Parkinson’sdisease(PD)....................................10
Clinical characteristics of Parkinson’s disease (PD).....10
MPTP/MPP+-induced parkisonian model).....................10
Mitochondrial dysfunction in Parkinson’s disease.........11
The relationship between mitochondrial function and dynamic morphology...............................................12
The regulation of mitochondria dynamic change............13
Other regulators of mitochondrial dynamics...............14
Therapeutic hypothermia..................................16
Clinical application.....................................16
Mechanisms underlying hypothermia-induced neuroprotection.16
Hypothermia ceased cell proliferation and arresting the cell cycle.....................................................17
The functional partners of CDK4 and CDK5 in cell cycle control...................................................17
Research rationale and hypothesis.........................20
Specific aims.............................................20
Materials and Methods.....................................21
Chemicals and antibodies..................................21
Cell culture..............................................21
Human neuroblastoma cells.................................21
Primary cortical neurons..................................22
Mitochondrial image acquisition...........................22
Computer-assisted analyses of mitochondrial morphology....23
3-[4, 5-Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay.......................................23
Propidium iodide (PI) staining............................24
Total RNA extraction......................................24
Reverse transcription-polymerase chain reaction (RT-PCR)..24
Isolation of mitochondria proteins........................25
Western blotting..........................................26
Immunocytochemistry.......................................26
Statistical analysis......................................27
Results...................................................28
Cold exposure prevents MPP+-induced mitochondrial fission.28
CDK4 and CDK5 inhibition prevents MPP+-induced neuron death.....................................................28
CDK4 and CDK5 inhibition prevents MPP+-induced mitochondrial fission...................................................29
Cold exposure and CDK inhibition reduces mitochondrial Drp1 protein expression.......................................29
The effect of cold exposure and CDK inhibitors on CIRBP and CDK expression...........................................30
Effects of cold exposure and CDK inhibition on the expression of CDK functional partners: cyclin D1, p27, p35 and p25..................................................31
Cold exposure and CDK4/5 inhibition protect primary cortical neurons against MPP+ toxicity.............................31
Cold exposure and CDK4/5 inhibition reduce MPP+-induced mitochondrial fission in primary cortical neurons.........32
Cold exposure and CDK4/5 inhibition reduce mitochondrial Drp1 and Mfn2 upregulation in MPP+-treated cortical neurons .........................................................33
Discussion...............................................34
Summary of our major finding.............................34
Brain temperature in Parkinson’s disease.................34
The significance of cell cycle regulation in PD..........35
The relationship of cell cycle and cell viability.........35
The effect of CDK4 on cell survival and mitochondrial dynamics..................................................36
The effect of CDK5 on cell survival and mitochondrial dynamics..................................................36
P27 not only binds with CDK4, but also with CDK5..........37
Clinical therapies for Parkinson’s disease by modulating mitochondrial function....................................38
Conclusion................................................40
References................................................41
Figure contents...........................................49
Figure 1 Cold exposure prevents MPP+-induced mitochondrial fission in mitoDsRed-transfected SK-N-SH neuroblastoma cells ..........................................................49
Figure 2 CDK inhibition prevents MPP+-induced neuron death in SK-N-SH cells ........................................51
Figure 3 CDK inhibition prevents MPP+-induced mitochondrial fission in SK-N-SH cells..................................52
Figure 4 Cold exposure and CDK inhibition reduces mitochondrial Drp1 protein expression in SK-N-SH cells...53
Figure 5 The effect of cold exposure and CDK inhibition on cold-inducible RNA-binding protein (CIRBP) and CDKs expression in SK-N-SH cells..............................55
Figure 6 Effect of cold exposure and CDK inhibition on the expression of CDK functional partners in SK-N-SH cells ..56
Figure 7 Cold exposure and CDK4/5 inhibition reduces MPP+-induced neuron loss in rat primary cortical neurons.....57
Figure 8 Cold exposure reduces MPP+-induced mitochondrial fission in primary cortical neurons.....................58
Figure 9 CDK inhibition reduces MPP+-induced mitochondrial fission in primary cortical neurons......................59
Figure 10 Cold exposure and CDK inhibition reduces mitochondrial Drp1 protein expression in primary cortical neurons...................................................60
Fig 11 The inhibition of CDK4 and CDK5 imitates cold exposure in reducing a Drp1-dependent mitochondrial fission and MPP+ toxicity.........................................62
Abdelwahid, E., Yokokura, T., Krieser, R.J., Balasundaram, S., Fowle, W.H., and White, K. (2007). Mitochondrial Disruption in Drosophila Apoptosis. Developmental Cell 12, 793-806.
Acín-Pérez, R., Bayona-Bafaluy, M.a.P., Ferna´ndez-Silva, P., Moreno-Loshuertos, R., rez-Martos, A.P., Bruno, C., Moraes, C.T., and Enr´ıquez, J.A. (2004). Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13(6), 805-815.
Azmoon, S., Demarest, C., Pucillo, A.L., Hjemdahl-Monsen, C., Kay, R., Ahmadi, N., Aronow, W.S., and Frishman, W.H. (2011). Neurologic and Cardiac Benefits of Therapeutic Hypothermia. Cardiology in Review 19, 108-114.
Büeler, H. (2009). Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Experimental Neurology 218, 235-246.
Baloh, R.H., Schmidt, R.E., Pestronk, A., and Milbrandt, J. (2007). Altered Axonal Mitochondrial Transport in the Pathogenesis of Charcot-Marie-Tooth Disease from Mitofusin 2 Mutations. Journal of Neuroscience 27, 422-430.
Barsoum, M.J., Yuan, H., Gerencser, A.A., Liot, G.r., Kushnareva, Y.E., Gra¨ber, S., Kovacs, I., Lee, W.D., Waggoner, J., Cui, J., et al. (2006a). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 23, 3900-3911.
Barsoum, M.J., Yuan, H., Gerencser, A.A., Liot, G.r., Kushnareva, Y.E., Gra¨ber, S., Kovacs, I., Lee, W.D., Waggoner, J., Cui, J., et al. (2006b). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25, 3900-3911.
Bossy-Wetzel, E., Barsoum, M.J., Godzik, A., Schwarzenbacher, R., and Lipton, S.A. (2003). Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology 15, 706-716.
Brinkkoetter, P.T., Olivier, P., Wu, J.S., Henderson, S., Krofft, R.D., Pippin, J.W., Hockenbery, D., Roberts, J.M., and Shankland, S.J. (2009). Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. Journal of Clinical Investigation 119, 3089-3101.
Carelli, V., Ross-Cisneros, F.N., and Sadun, A.A. (2004). Mitochondrial dysfunction as a cause of optic neuropathies. Progress in Retinal and Eye Research 23, 53-89.
Cerveny, K.L., Tamura, Y., Zhang, Z., Jensen, R.E., and Sesaki, H. (2007). Regulation of mitochondrial fusion and division. Trends in Cell Biology 17, 563-569.

Chang, C.R., and Blackstone, C. (2007). Cyclic AMP-dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology. Journal of Biological Chemistry 282, 21583-21587.
Chen, H. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of Cell Biology 160, 189-200.
Chen, H., McCaffery, J.M., and Chan, D.C. (2007). Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum. Cell 130, 548-562.
Cho, D.-H., Nakamura, T., and Lipton, S.A. (2010a). Mitochondrial dynamics in cell death and neurodegeneration. Cellular and Molecular Life Sciences 67, 3435-3447.
Cho, D., Nakamura, T., and Lipton, S. (2010b). Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67, 3435-3447.
Choi, S., Noh, J., Hirose, R., Ferell, L., Bedolli, M., Roberts, J.P., and Niemann, C.U. (2005). Mild Hypothermia Provides Significant Protection Against Ischemia/Reperfusion Injury in Livers of Obese and Lean Rats. Annals of Surgery 241, 470-476.
Citerio, G., Cormio, M., and Polderman, K. (2004 ). Moderate hypothermia in traumatic brain injury results of clinical trials. Minerva Anestesiol 70, 213-218.
Cribbs, J.T., and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO reports 8, 939-944.
Cruz, J.C., and Tsai, L.-H. (2004). Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol Med 10, 452-458.
Dacey, D.M., Liao, H.-W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.-W., and Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749-754.
Dhavan, R., and Tsai, L.-H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749-759.
Erecinska, M., Thoresen, M., and Silver, I.A. (2003). Effects of Hypothermia on Energy Metabolism in Mammalian Central Nervous System. Journal of Cerebral Blood Flow & Metabolism, 513-530.
Fabbrini, MD, G., Abbruzzese, MD, G., Marconi, S.M., and Zappia, M.M. (2012). Selegiline a reappraisal of its role in Parkinson disease. 35, 134-140.
Folch, J., Junyent, F., Verdaguer, E., Auladell, C., Pizarro, J.G., Beas-Zarate, C., Pallàs, M., and Camins, A. (2012). Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 22, 195-207.
Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1, 515-525.
German, D.C., Manaye, K.F., Smith, W.K., Woodward, D.J., and Saper, C.B. (1989). Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol 26, 507-514.
Goyal, G., Fell, B., Sarin, A., Youle, R.J., and Sriram, V. (2007). Role of Mitochondrial Remodeling in Programmed Cell Death in Drosophila melanogaster. Developmental Cell 12, 807-816.
Graham, D. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. 14, 633-643.
Haas, R.H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R., and Clifford W. Shults, M. (1995). Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol 37, 714-722.
Han, H.S., Qiao, Y., Karabiyikoglu, M., Giffard, R.G., and Yenari, M.A. (2002). Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22, 3921-3928.
Harder, Z., Zunino, R., and McBride, H. (2004). Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission. Current Biology 14, 340-345.
Harris, O.A., John M. Colford, J., Good, M.C., and Matz, P.G. (2002). The role of hypothermia in the management of severe brain injury a meta-analysis. Arch Neurol 59, 1077-1083.
Hernández-Ortega, K., and Arias, C. (2012). ERK activation and expression of neuronal cell cycle markers in the hippocampus after entorhinal cortex lesion. Journal of Neuroscience Research, n/a-n/a.
Hisanaga, S.-i., and Endo, R. (2010). Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 115, 1309-1321.
Hitto Kaufmann, Xenia Mazur, Martin Fussenegger, and Bailey, J.E. (1999). Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63, 573-582.
Hoglinger, G.U., Breunig, J.J., Depboylu, C., Rouaux, C., Michel, P.P., Alvarez-Fischer, D., Boutillier, A.L., DeGregori, J., Oertel, W.H., Rakic, P., et al. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences 104, 3585-3590.
Hoppins, S., Lackner, L., and Nunnari, J. (2007). The Machines that Divide and Fuse Mitochondria. Annual Review of Biochemistry 76, 751-780.
Hornykiewicz, O., and Kish, S.J. (1987). Biochemical pathophysiology of Parkinson's disease. Adv Neurol 45, 19-34.
Kageyama, Y., Zhang, Z., and Sesaki, H. (2011). Mitochondrial division: molecular machinery and physiological functions. Current Opinion in Cell Biology 23, 427-434.
Kalinderi, K., Fidani, L., Katsarou, Z., and Bostantjopoulou, S. (2011). Pharmacological treatment and the prospect of pharmacogenetics in Parkinson's disease. Int J Clin Pract 65, 1289-1294.
Karbowski, M. (2002). Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. The Journal of Cell Biology 159, 931-938.
Karbowski, M., Neutzner, A., and Youle, R.J. (2007). The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. The Journal of Cell Biology 178, 71-84.
Keane, P.C., Kurzawa, M., Blain, P.G., and C.M.Morris (2011). Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis 2011:716871.
Kesavapany, S., Li, B.-S., Amin, N., Zheng, Y.-L., Grant, P., and Pant, H.C. (2004). Neuronal cyclin-dependent kinase 5 role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697, 143-153.
Kijima, K., Numakura, C., Izumino, H., Umetsu, K., Nezu, A., Shiiki, T., Ogawa, M., Ishizaki, Y., Kitamura, T., Shozawa, Y., et al. (2004). Mitochondrial GTPase mitofusin 2 mutation in Charcot Marie Tooth neuropathy type 2A. Human Genetics 116, 23-27.
Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008). Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience 9, 505-518.
Kopin, I., and Markey, S. (1988). MPTP toxicity implications for research in Parkinson's disease. Annu Rev Neurosci 11, 81-96.
Kuan, W.-L., Poole, E., Fletcher, M., Karniely, S., Tyers, P., Wills, M., Barker, R.A., and Sinclair, J.H. (2012). A novel neuroprotective therapy for Parkinson's disease using a viral noncoding RNA that protects mitochondrial complex I activity. J Exp Med 209, 1-10.
Lai, K.-O., and Ip, N.Y. (2009). Recent advances in understanding the roles of Cdk5 in synaptic plasticity Biochim Biophys Acta 1792, 741-745.
Langston, J., EB, L., and I, I. (1984). MPTP-induced parkinsonism in human and non-human primates--clinical and experimental aspects. Acta Neurol Scand Suppl 100, 49-54.
Lee, K.-Y., Rosales, J.L., Tang, D., and Wang, J.H. (1996). Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J Biol Chem 271, 1538-1543.
Lee, P.H., Kim, H.-S., Lee1, J.E., Choi, Y., Hong, J.Y., Nam, H.S., Sohn, Y.H., and Kim, H.O. (2011). Comparison of endothelial progenitor cells in Parkinsons disease patients treated with levodopa and levodopaCOMT inhibitor. PLoS One 6, e21536.
Lee, S.M., Zhao, H., Maier, C.M., and Steinberg, G.K. (2009). The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. Journal of Cerebral Blood Flow & Metabolism 29, 1589-1600.
Lee, Y.j. (2004). Roles of the Mammalian Mitochondrial Fission and Fusion Mediators Fis1, Drp1, and Opa1 in Apoptosis. Molecular Biology of the Cell 15, 5001-5011.
Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795.
Liu, J., Wang, L., Zhan, S., and Xia, Y. (2011). Coenzyme Q10 for Parkinson's disease. Cochrane Database Syst Rev 7, CD008150.
Lo, E.H., Dalkara, T., and Moskowitz, M.A. (2003). Neurological diseases: Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience 4, 399-414.
Lutz, A.K., Exner, N., Fett, M.E., Schlehe, J.S., Kloos, K., Lammermann, K., Brunner, B., Kurz-Drexler, A., Vogel, F., Reichert, A.S., et al. (2009). Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation. Journal of Biological Chemistry 284, 22938-22951.
Ma, Y., Dhawan, V., Mentis, M., Chaly, T., Spetsieris, P.G., and Eidelberg, D. (2002). Parametric mapping of [18F]FPCIT binding in early stage Parkinson's disease: A PET study. Synapse 45, 125-133.
Meuer, K., Suppanz, I.E., Lingor, P., Planchamp, V., Göricke, B., Fichtner, L., Braus, G.H., Dietz, G.P.H., Jakobs, S., Bähr, M., et al. (2007). Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death and Differentiation 14, 651-661.
Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009). From the Cover: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences 106, 11960-11965.
Nakamura, N., Kimura, Y., Tokuda, M., Honda, S., and Hirose, S. (2006). MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO reports 7, 1019-1022.
Nicklas, W., Vyas, I., and Heikkila, R. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36, 2503-2508.
Ning, X.-H., Chen, S.-H., Xu, C.-S., Li, L., Yao, L.Y., Qian, K., KRUEGER, J.J., HYYTI, O.M., and PORTMAN, M.A. (2002). Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. J Appl Physiol 92, 2200-2207.
Nishiyama, H., Itoh, K., Kaneko, Y., Kishishita, M., Yoshida, O., and Fujita, J. (1997). A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137, 899-908.
Otsuka, Y., Tanaka, T., Uchida, D., Noguchi, Y., Saeki, N., Saito, Y., and Tatsuno, I. (2004). Roles of cyclin-dependent kinase 4 and p53 in neuronal cell death induced by doxorubicin on cerebellar granule neurons in mouse. Neuroscience Letters 365, 180-185.
Pakkenberg, B., Møller, A., Gundersen, H.J.G., Dam, A.M., and Pakkenberg, H. (1991). The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54, 30-33.
Parkinson, J. (1817). An Essay on the Shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14, 223-236.
Polderman, K.H. (2008). Induced hypothermia and fever control for prevention and treatment of neurological injuries. The Lancet 371, 1955-1969.
Polderman, K.H. (2009). Mechanisms of action, physiological effects, and complications of hypothermia. Critical Care Medicine 37, S186-S202.
Rango, M., Arighi, A., Bonifati, C., and Bresolin, N. (2012). Increased brain temperature in Parkinson’s disease. NeuroReport 23, 129-133.
Reddy, P.H., Reddy, T.P., Manczak, M., Calkins, M.J., Shirendeb, U., and Mao, P. (2011). Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Research Reviews 67, 103-118.
Roobol, A., Roobol, J., Carden, M.J., Bastide, A., Willis, A.E., B, W., Goodacre, R., and Smales, C.M. (2011). ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal 435, 499-508.
Schapira, A.H.V., Cooper, J.M., Dexter, D.T., Clark, J., Jenner, P., and Marsden, C.D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54, 823-827.
Shults, C.W., Oakes, D., Kieburtz, K., Beal, M.F., Haas, R., Plumb, S., Juncos, J.L., Nutt, J., Shoulson, I., Julie Carter, R., et al. (2002). Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol
59, 1541-1550.
Su, S.C., and Tsai, L.-H. (2011). Cyclin-Dependent Kinases in Brain Development and Disease. Annual Review of Cell and Developmental Biology 27, 465-491.
Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission. Journal of Biological Chemistry 282, 11521-11529.
Tian, B., Yang, Q., and Mao, Z. (2009). Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nature Cell Biology 11, 211-218.
Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27, 433-446.
Uo, T., Dworzak, J., Kinoshita, C., Inman, D.M., Kinoshita, Y., Horner, P.J., and Morrison, R.S. (2009). Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons. Experimental Neurology 218, 274-285.
Varvel, N.H., Bhaskar, K., Patil, A.R., Pimplikar, S.W., Herrup, K., and Lamb, B.T. (2008). A Oligomers Induce Neuronal Cell Cycle Events in Alzheimer's Disease. Journal of Neuroscience 28, 10786-10793.
Vincent, I., Jicha, G., Rosado, M., and Dickson, D.W. (1997). Aberrant expression of mitotic cdc2 cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17, 3588-3598.
Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology 11, 872-884.
Yang, Y., Geldmacher, D.S., and Herrup, K. (2001). DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 21, 2661-2668.
Yenari, M.A., Iwayama, S., Cheng, D., Sun, G.H., Fujimura, M., Morita-Fujimura, Y., Chan, P.H., and Steinberg, G.K. (2002). Mild Hypothermia Attenuates Cytochrome C Release but Does Not Alter Bcl-2 Expression or Caspase Activation After Experimental Stroke. J Cereb Blood Flow Metab 22, 29-38.
Yonashiro, R., Ishido, S., Kyo, S., Fukuda, T., Goto, E., Matsuk, Y., OhmuraHoshino, M., Sada, K., Hotta, H., Yamamura, H., et al. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25, 3618-3626.
Yu, T., Sheu, S.S., Robotham, J.L., and Yoon, Y. (2008). Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research 79, 341-351.
Yu, W., Sun, Y., Guo, S., and Lu, B. (2011). The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and
Abdelwahid, E., Yokokura, T., Krieser, R.J., Balasundaram, S., Fowle, W.H., and White, K. (2007). Mitochondrial Disruption in Drosophila Apoptosis. Developmental Cell 12, 793-806.
Acín-Pérez, R., Bayona-Bafaluy, M.a.P., Ferna´ndez-Silva, P., Moreno-Loshuertos, R., rez-Martos, A.P., Bruno, C., Moraes, C.T., and Enr´ıquez, J.A. (2004). Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13(6), 805-815.
Azmoon, S., Demarest, C., Pucillo, A.L., Hjemdahl-Monsen, C., Kay, R., Ahmadi, N., Aronow, W.S., and Frishman, W.H. (2011). Neurologic and Cardiac Benefits of Therapeutic Hypothermia. Cardiology in Review 19, 108-114.
Büeler, H. (2009). Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Experimental Neurology 218, 235-246.
Baloh, R.H., Schmidt, R.E., Pestronk, A., and Milbrandt, J. (2007). Altered Axonal Mitochondrial Transport in the Pathogenesis of Charcot-Marie-Tooth Disease from Mitofusin 2 Mutations. Journal of Neuroscience 27, 422-430.
Barsoum, M.J., Yuan, H., Gerencser, A.A., Liot, G.r., Kushnareva, Y.E., Gra¨ber, S., Kovacs, I., Lee, W.D., Waggoner, J., Cui, J., et al. (2006a). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 23, 3900-3911.
Barsoum, M.J., Yuan, H., Gerencser, A.A., Liot, G.r., Kushnareva, Y.E., Gra¨ber, S., Kovacs, I., Lee, W.D., Waggoner, J., Cui, J., et al. (2006b). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25, 3900-3911.
Bossy-Wetzel, E., Barsoum, M.J., Godzik, A., Schwarzenbacher, R., and Lipton, S.A. (2003). Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology 15, 706-716.
Brinkkoetter, P.T., Olivier, P., Wu, J.S., Henderson, S., Krofft, R.D., Pippin, J.W., Hockenbery, D., Roberts, J.M., and Shankland, S.J. (2009). Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. Journal of Clinical Investigation 119, 3089-3101.
Carelli, V., Ross-Cisneros, F.N., and Sadun, A.A. (2004). Mitochondrial dysfunction as a cause of optic neuropathies. Progress in Retinal and Eye Research 23, 53-89.
Cerveny, K.L., Tamura, Y., Zhang, Z., Jensen, R.E., and Sesaki, H. (2007). Regulation of mitochondrial fusion and division. Trends in Cell Biology 17, 563-569.
Chang, C.R., and Blackstone, C. (2007). Cyclic AMP-dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology. Journal of Biological Chemistry 282, 21583-21587.
Chen, H. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of Cell Biology 160, 189-200.
Chen, H., McCaffery, J.M., and Chan, D.C. (2007). Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum. Cell 130, 548-562.
Cho, D.-H., Nakamura, T., and Lipton, S.A. (2010a). Mitochondrial dynamics in cell death and neurodegeneration. Cellular and Molecular Life Sciences 67, 3435-3447.
Cho, D., Nakamura, T., and Lipton, S. (2010b). Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67, 3435-3447.
Choi, S., Noh, J., Hirose, R., Ferell, L., Bedolli, M., Roberts, J.P., and Niemann, C.U. (2005). Mild Hypothermia Provides Significant Protection Against Ischemia/Reperfusion Injury in Livers of Obese and Lean Rats. Annals of Surgery 241, 470-476.
Citerio, G., Cormio, M., and Polderman, K. (2004 ). Moderate hypothermia in traumatic brain injury results of clinical trials. Minerva Anestesiol 70, 213-218.
Cribbs, J.T., and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO reports 8, 939-944.
Cruz, J.C., and Tsai, L.-H. (2004). Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol Med 10, 452-458.
Dacey, D.M., Liao, H.-W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.-W., and Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749-754.
Dhavan, R., and Tsai, L.-H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749-759.
Erecinska, M., Thoresen, M., and Silver, I.A. (2003). Effects of Hypothermia on Energy Metabolism in Mammalian Central Nervous System. Journal of Cerebral Blood Flow & Metabolism, 513-530.
Fabbrini, MD, G., Abbruzzese, MD, G., Marconi, S.M., and Zappia, M.M. (2012). Selegiline a reappraisal of its role in Parkinson disease. 35, 134-140.
Folch, J., Junyent, F., Verdaguer, E., Auladell, C., Pizarro, J.G., Beas-Zarate, C., Pallàs, M., and Camins, A. (2012). Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 22, 195-207.
Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1, 515-525.
German, D.C., Manaye, K.F., Smith, W.K., Woodward, D.J., and Saper, C.B. (1989). Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol 26, 507-514.
Goyal, G., Fell, B., Sarin, A., Youle, R.J., and Sriram, V. (2007). Role of Mitochondrial Remodeling in Programmed Cell Death in Drosophila melanogaster. Developmental Cell 12, 807-816.
Graham, D. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. 14, 633-643.
Haas, R.H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R., and Clifford W. Shults, M. (1995). Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol 37, 714-722.
Han, H.S., Qiao, Y., Karabiyikoglu, M., Giffard, R.G., and Yenari, M.A. (2002). Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22, 3921-3928.
Harder, Z., Zunino, R., and McBride, H. (2004). Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission. Current Biology 14, 340-345.
Harris, O.A., John M. Colford, J., Good, M.C., and Matz, P.G. (2002). The role of hypothermia in the management of severe brain injury a meta-analysis. Arch Neurol 59, 1077-1083.
Hernández-Ortega, K., and Arias, C. (2012). ERK activation and expression of neuronal cell cycle markers in the hippocampus after entorhinal cortex lesion. Journal of Neuroscience Research, n/a-n/a.
Hisanaga, S.-i., and Endo, R. (2010). Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 115, 1309-1321.
Hitto Kaufmann, Xenia Mazur, Martin Fussenegger, and Bailey, J.E. (1999). Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63, 573-582.
Hoglinger, G.U., Breunig, J.J., Depboylu, C., Rouaux, C., Michel, P.P., Alvarez-Fischer, D., Boutillier, A.L., DeGregori, J., Oertel, W.H., Rakic, P., et al. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences 104, 3585-3590.
Hoppins, S., Lackner, L., and Nunnari, J. (2007). The Machines that Divide and Fuse Mitochondria. Annual Review of Biochemistry 76, 751-780.
Hornykiewicz, O., and Kish, S.J. (1987). Biochemical pathophysiology of Parkinson's disease. Adv Neurol 45, 19-34.
Kageyama, Y., Zhang, Z., and Sesaki, H. (2011). Mitochondrial division: molecular machinery and physiological functions. Current Opinion in Cell Biology 23, 427-434.
Kalinderi, K., Fidani, L., Katsarou, Z., and Bostantjopoulou, S. (2011). Pharmacological treatment and the prospect of pharmacogenetics in Parkinson's disease. Int J Clin Pract 65, 1289-1294.
Karbowski, M. (2002). Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. The Journal of Cell Biology 159, 931-938.
Karbowski, M., Neutzner, A., and Youle, R.J. (2007). The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. The Journal of Cell Biology 178, 71-84.
Keane, P.C., Kurzawa, M., Blain, P.G., and C.M.Morris (2011). Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis 2011:716871.
Kesavapany, S., Li, B.-S., Amin, N., Zheng, Y.-L., Grant, P., and Pant, H.C. (2004). Neuronal cyclin-dependent kinase 5 role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697, 143-153.
Kijima, K., Numakura, C., Izumino, H., Umetsu, K., Nezu, A., Shiiki, T., Ogawa, M., Ishizaki, Y., Kitamura, T., Shozawa, Y., et al. (2004). Mitochondrial GTPase mitofusin 2 mutation in Charcot Marie Tooth neuropathy type 2A. Human Genetics 116, 23-27.
Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008). Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience 9, 505-518.
Kopin, I., and Markey, S. (1988). MPTP toxicity implications for research in Parkinson's disease. Annu Rev Neurosci 11, 81-96.
Kuan, W.-L., Poole, E., Fletcher, M., Karniely, S., Tyers, P., Wills, M., Barker, R.A., and Sinclair, J.H. (2012). A novel neuroprotective therapy for Parkinson's disease using a viral noncoding RNA that protects mitochondrial complex I activity. J Exp Med 209, 1-10.
Lai, K.-O., and Ip, N.Y. (2009). Recent advances in understanding the roles of Cdk5 in synaptic plasticity Biochim Biophys Acta 1792, 741-745.
Langston, J., EB, L., and I, I. (1984). MPTP-induced parkinsonism in human and non-human primates--clinical and experimental aspects. Acta Neurol Scand Suppl 100, 49-54.
Lee, K.-Y., Rosales, J.L., Tang, D., and Wang, J.H. (1996). Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J Biol Chem 271, 1538-1543.
Lee, P.H., Kim, H.-S., Lee1, J.E., Choi, Y., Hong, J.Y., Nam, H.S., Sohn, Y.H., and Kim, H.O. (2011). Comparison of endothelial progenitor cells in Parkinsons disease patients treated with levodopa and levodopaCOMT inhibitor. PLoS One 6, e21536.
Lee, S.M., Zhao, H., Maier, C.M., and Steinberg, G.K. (2009). The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. Journal of Cerebral Blood Flow & Metabolism 29, 1589-1600.
Lee, Y.j. (2004). Roles of the Mammalian Mitochondrial Fission and Fusion Mediators Fis1, Drp1, and Opa1 in Apoptosis. Molecular Biology of the Cell 15, 5001-5011.
Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795.
Liu, J., Wang, L., Zhan, S., and Xia, Y. (2011). Coenzyme Q10 for Parkinson's disease. Cochrane Database Syst Rev 7, CD008150.
Lo, E.H., Dalkara, T., and Moskowitz, M.A. (2003). Neurological diseases: Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience 4, 399-414.
Lutz, A.K., Exner, N., Fett, M.E., Schlehe, J.S., Kloos, K., Lammermann, K., Brunner, B., Kurz-Drexler, A., Vogel, F., Reichert, A.S., et al. (2009). Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation. Journal of Biological Chemistry 284, 22938-22951.
Ma, Y., Dhawan, V., Mentis, M., Chaly, T., Spetsieris, P.G., and Eidelberg, D. (2002). Parametric mapping of [18F]FPCIT binding in early stage Parkinson's disease: A PET study. Synapse 45, 125-133.
Meuer, K., Suppanz, I.E., Lingor, P., Planchamp, V., Göricke, B., Fichtner, L., Braus, G.H., Dietz, G.P.H., Jakobs, S., Bähr, M., et al. (2007). Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death and Differentiation 14, 651-661.
Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009). From the Cover: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences 106, 11960-11965.
Nakamura, N., Kimura, Y., Tokuda, M., Honda, S., and Hirose, S. (2006). MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO reports 7, 1019-1022.
Nicklas, W., Vyas, I., and Heikkila, R. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36, 2503-2508.
Ning, X.-H., Chen, S.-H., Xu, C.-S., Li, L., Yao, L.Y., Qian, K., KRUEGER, J.J., HYYTI, O.M., and PORTMAN, M.A. (2002). Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. J Appl Physiol 92, 2200-2207.
Nishiyama, H., Itoh, K., Kaneko, Y., Kishishita, M., Yoshida, O., and Fujita, J. (1997). A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137, 899-908.
Otsuka, Y., Tanaka, T., Uchida, D., Noguchi, Y., Saeki, N., Saito, Y., and Tatsuno, I. (2004). Roles of cyclin-dependent kinase 4 and p53 in neuronal cell death induced by doxorubicin on cerebellar granule neurons in mouse. Neuroscience Letters 365, 180-185.
Pakkenberg, B., Møller, A., Gundersen, H.J.G., Dam, A.M., and Pakkenberg, H. (1991). The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54, 30-33.
Parkinson, J. (1817). An Essay on the Shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14, 223-236.
Polderman, K.H. (2008). Induced hypothermia and fever control for prevention and treatment of neurological injuries. The Lancet 371, 1955-1969.
Polderman, K.H. (2009). Mechanisms of action, physiological effects, and complications of hypothermia. Critical Care Medicine 37, S186-S202.
Rango, M., Arighi, A., Bonifati, C., and Bresolin, N. (2012). Increased brain temperature in Parkinson’s disease. NeuroReport 23, 129-133.
Reddy, P.H., Reddy, T.P., Manczak, M., Calkins, M.J., Shirendeb, U., and Mao, P. (2011). Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Research Reviews 67, 103-118.
Roobol, A., Roobol, J., Carden, M.J., Bastide, A., Willis, A.E., B, W., Goodacre, R., and Smales, C.M. (2011). ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal 435, 499-508.
Schapira, A.H.V., Cooper, J.M., Dexter, D.T., Clark, J., Jenner, P., and Marsden, C.D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54, 823-827.
Shults, C.W., Oakes, D., Kieburtz, K., Beal, M.F., Haas, R., Plumb, S., Juncos, J.L., Nutt, J., Shoulson, I., Julie Carter, R., et al. (2002). Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59, 1541-1550.
Su, S.C., and Tsai, L.-H. (2011). Cyclin-Dependent Kinases in Brain Development and Disease. Annual Review of Cell and Developmental Biology 27, 465-491.
Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission. Journal of Biological Chemistry 282, 11521-11529.
Tian, B., Yang, Q., and Mao, Z. (2009). Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nature Cell Biology 11, 211-218.
Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27, 433-446.
Uo, T., Dworzak, J., Kinoshita, C., Inman, D.M., Kinoshita, Y., Horner, P.J., and Morrison, R.S. (2009). Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons. Experimental Neurology 218, 274-285.
Varvel, N.H., Bhaskar, K., Patil, A.R., Pimplikar, S.W., Herrup, K., and Lamb, B.T. (2008). A Oligomers Induce Neuronal Cell Cycle Events in Alzheimer's Disease. Journal of Neuroscience 28, 10786-10793.
Vincent, I., Jicha, G., Rosado, M., and Dickson, D.W. (1997). Aberrant expression of mitotic cdc2 cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17, 3588-3598.
Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology 11, 872-884.
Yang, Y., Geldmacher, D.S., and Herrup, K. (2001). DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 21, 2661-2668.
Yenari, M.A., Iwayama, S., Cheng, D., Sun, G.H., Fujimura, M., Morita-Fujimura, Y., Chan, P.H., and Steinberg, G.K. (2002). Mild Hypothermia Attenuates Cytochrome C Release but Does Not Alter Bcl-2 Expression or Caspase Activation After Experimental Stroke. J Cereb Blood Flow Metab 22, 29-38.
Yonashiro, R., Ishido, S., Kyo, S., Fukuda, T., Goto, E., Matsuk, Y., OhmuraHoshino, M., Sada, K., Hotta, H., Yamamura, H., et al. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25, 3618-3626.
Yu, T., Sheu, S.S., Robotham, J.L., and Yoon, Y. (2008). Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research 79, 341-351.
Yu, W., Sun, Y., Guo, S., and Lu, B. (2011). The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Human Molecular Genetics 20, 3227-3240.
Yu, X.X., Mao, W., ZHONG, A., Schow, P., Brush, J., Sherwood, S.W., Adams, S.H., and Pan, G. (2000). Characterization of novel UCP5 BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J 14, 1611-1618.
Yuan, H., Gerencser, A.A., Liot, G., Lipton, S.A., Ellisman, M., Perkins, G.A., and Bossy-Wetzel, E. (2006). Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death and Differentiation 14, 462-471.
Züchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genetics 36, 449-451.
Zhang, J., Li, H., and Herrup, K. (2010a). Cdk5 Nuclear Localization Is p27-dependent in Nerve Cells: IMPLICATIONS FOR CELL CYCLE SUPPRESSION AND CASPASE-3 ACTIVATION. Journal of Biological Chemistry 285, 14052-14061.
Zhang, J., Li, H., Yabut, O., Fitzpatrick, H., D'Arcangelo, G., and Herrup, K. (2010b). Cdk5 Suppresses the Neuronal Cell Cycle by Disrupting the E2F1-DP1 Complex. Journal of Neuroscience 30, 5219-5228.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊