跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳文斌
研究生(外文):Wen-BinWu
論文名稱:基於車載網路之都會區路網的即時旅行時間預估系統
論文名稱(外文):Real-time Travel Time Estimation System for Urban Network Based on Vehicle Ad-hoc Network
指導教授:黃國平黃國平引用關係
指導教授(外文):Kuo-Ping Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:交通管理學系碩博士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:旅行時間預估先進旅行者資訊系統車載網路資料融合
外文關鍵詞:travel time estimationAdvanced Traveler Information Services (ATIS)Vehicle Ad-hoc Network (VANET)data fusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
旅行時間預估與路徑建議在ITS上扮演了相當重要的角色,尤其運用在先進旅行者資訊系統(Advanced Traveler Information Systems, ATIS),近年來車載網路(VANET)技術的快速興起,除了提供車輛對車輛(V2V)與車輛對路側(V2R)的動態連網通訊能力,也提供了即時交通資訊的交換以提高路網效能的可能性。本研究假設路口的紅綠燈控制器都裝置具有VANET功能的路側單元(RSU),車輛都裝有車上單元(OBU),在都會區路網中,本研究將嘗試構建出任意路口點對點的即時旅行時間預估與最短旅行時間路徑建議的系統。
本研究目的包含:一、利用資料融合方法構建出都會區路網的旅行時間預估模式,此方法將給予各資料來源適當的權重,用以整合不同來源的資料,可望來降低資訊的不確定性以及增加模式的實用性,藉此得到較準確且可靠的交通資訊;二、運用VANET的概念,車輛與路口之間可做即時資訊的傳遞,以都會區內的路口號誌為中介路側設備單元,利用路口RSU計算建議路徑與旅行時間之預估,再配合協同式運算的概念,路口與路口之間的RSU相互交換與更新即時交通資訊,除了可以減輕後端系統的運算負擔,亦能提供駕駛於每個路口皆能得到最可靠的建議路徑與旅行時間預估值。因此,本研究將會構建出資料融合的旅行時間預估模式,並建立一套協同式路口的旅行時間預估架構,使其在都會區路網中的任意兩路口之間,可以提供駕駛可靠的即時路徑建議與準確的旅行時間預估系統。
本研究以實際的小型都會區路網─台南市東區與北區內的道路為研究對象,資料來源包含由台南市政府交通局提供的車輛偵測器資料(VD),以及台南市計程車隊所提供的GPS回報資料(PV)。實驗結果顯示,單純利用PV或VD資料所做的預估,並不能維持一定的準確度,且變異程度均較高;反之加入即時資料所做的預估,其準確度相對僅利用歷史資料所做的預估,可來得較高或是維持水平;隨資料融合的階層數越多,其準確度也會逐漸提高或維持水平,且模式的變異程度也會逐漸降低;建議路徑實際的旅行時間在不同時段下,大部分都要比其他路徑來得較為省時並可維持一定的可靠度。
Travel time estimation and route suggestion play certain important roles in ITS, especially when applying to Advanced Traveler Information Services (ATIS). In recent years, the technique of Vehicle Ad-hoc Network (VANET) rises and develops quickly; VANET provides the capability of dynamic internet-connected communication as well as the possibility of exchanging real-time traffic information which can upgrade the efficiency of road network. This study supposes intersection traffic signals controllers are all equipped with roadside unit (RSU) which has VANET capability and vehicles are also all equipped with on-board unit (OBU). In city road network, this study will attempt to construct real-time travel time estimation and the shortest travel time route suggestion system of any intersection (point) to intersection (point).
The purposes of this study include: First, using data fusion scheme to construct travel time estimation model of city road network. The scheme would give appropriate weight to each data source to integrate data from different sources. It is expected that the uncertainty of data will decrease and the practicality of model will be improved, therefore more accurate and more reliable traffic information can be obtained. Second, by adopting the concept of VANET, real-time information communication between vehicle and intersection is feasible. It regards intersection traffic signals in city as intermediary roadside units. And then it calculates suggested route and estimates travel time by intersection RSU and along with the concept of collaborative computing, it exchanges and updates real-time traffic information between RSUs of intersections. It could not only alleviate the computing burden of back-end systems but provide drivers with the most reliable suggested route and travel time estimation value of each intersection. Therefore, this study will use data fusion to construct travel time estimation model and establish a travel time estimation structure of collaborative intersections. In this way a system of reliable real-time route suggestion and accurate travel time for drivers between any two intersections in city road network can be provided.
This study takes practical small city road network-sections in east and north district of Tainan City as research target. Data sources include the vehicle detectors (VD) data which is acquired from Tainan City Government Department of Transportation, and GPS report data from taxi fleet in Tainan (Chunghwa satellite fleet). Experiment results reveal that the accuracy of estimation cannot be maintained on a certain degree and has a higher degree of variation when only one data source is applied, either PV or VD. The travel time estimation becomes more accurate or maintains on a certain level when combining with real-time data and comparing with results adopting historical data only. The accuracy increases gradually or maintains on a certain level and the variation of model also decreases gradually when more step number of data fusion is adopted. As a result, under different temporal periods, most of the practical travel time of suggested route could save more time and maintain certain reliability than other routes.
摘要 I
Abstract III
誌謝 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 5
1.4 研究流程 5
第二章 文獻回顧 7
2.1 資料融合方法 7
2.2 車載網路(VANET) 9
2.3 旅行時間預估模式 10
2.4 小結 14
第三章 構建交通資料融合之旅行時間預估模式 15
3.1 距離權重法 15
3.2 構建旅行時間預估模式 18
3.2.1 PV歷史資料的旅行時間預估模式(TTE1) 20
3.2.2 VD歷史資料的旅行時間預估模式(TTE2) 20
3.2.3 PV即時資料的旅行時間預估模式(TTE3) 21
3.2.4 VD即時資料的旅行時間預估模式(TTE4) 21
3.2.5 融合PV歷史與即時資料的旅行時間預估模式(TTE5) 22
3.2.6 融合VD歷史與即時資料的旅行時間預估模式(TTE6) 22
3.2.7 融合PV與VD歷史資料的旅行時間預估模式(TTE7) 22
3.2.8 融合PV與VD即時資料的旅行時間預估模式(TTE8) 24
3.2.9 融合PV與VD其歷史與即時資料的旅行時間預估模式(一) (TTE9) 24
3.2.10 融合PV與VD其歷史與即時資料的旅行時間預估模式(二) (TTE10)24
第四章 交通資料融合的旅行時間預估實驗 26
4.1 資料來源 26
4.2 實驗流程 27
4.2.1 篩選VD每十五分鐘資料 28
4.2.2 篩選PV交通資訊點 30
4.3 實驗設計 32
4.4 實驗結果與分析 35
4.3.1 案例一 36
4.3.2 案例二 37
4.3.3 案例三 38
4.3.4 案例四 40
4.3.5 案例五 41
第五章 路口對路口之即時旅行時間預估與路徑建議系統 43
5.1 都會區路網的即時旅行時間預估系統概念 43
5.2 路口與路口之間的即時交通資訊交換機制 48
5.3 最短旅行時間路徑的演算流程 54
5.3.1 歸納PV旅程細節 55
5.3.2 推算任意兩路口之旅行時間 56
5.3.3 求得任意兩路口之最短旅行時間路徑 58
第六章 即時路徑建議與旅行時間預估實驗 60
6.1 實驗設計 60
6.2 實驗結果與分析 61
6.2.1 實例一 62
6.2.2 實例二 62
第七章 結論與建議 67
7.1 資料融合與路網點對點即時旅行時間預估系統之結論 67
7.1.1 資料融合之結論 67
7.1.2 路網點對點即時旅行時間預估系統之結論 68
7.2 資料融合與路網點對點即時旅行時間預估系統之未來建議 69
7.2.1 資料融合之未來建議 69
7.2.2 路網點對點即時旅行時間預估系統之未來建議 70
參考文獻 71
附錄1 實驗設計規格書 76
[1]毛治國、王晉元、吳健生、郭奕妏、邱孟佑、黃裕文等人,2006,“用路人異質資訊融合與應用技術平臺之開發(3/3),行政院國家科學委員會專題研究成果報告(計畫編號:NSC95-2218-E-009-010)。
[2]王晉元,2009,“旅行時間預測初探,中華技術季刊,第83期。
[3]朱松偉、江宏志、歐俊輝、林佑霖,2000,“先進交通管理系統(ATMS)之應用—利用GPS資料庫建構道路服務水準評估系統(Ⅰ),行政院國家科學委員會專題研究成果報告(計畫編號:NSC 94-2211-E-231-004-) ,未出版。
[4]交通部運輸研究所,臺灣地區公路容量手冊,民國90年。
[5]吳玉珍、曹瑞和、吳東凌,2004“應用都市公車與計程車動態資訊系統發展ATIS即時交通資訊系統之研究,交通部運輸研究所。
[6]吳佳峰,2001,“有GPS 資訊提供下之車輛旅行時間預估模式之研究,國立交通大學運輸工程與管理學系研究所碩士論文。
[7]吳欣潔,2004,“熵應用於交通資料融合之研究,國立交通大學運輸科技與管理學系研究所碩士論文。
[8]吳瑞豐,2006,“最佳權重法應用於交通資料融合,國立交通大學運輸科技與管理學系研究所碩士論文。
[9]李穎,2001,“類神經網路應用於國道客運班車旅行時間預測模式之研究,國立成功大學交通管理學系研究所碩士論文。
[10]張惠汶,2002,“利用公車GPS 定位資料推估路段行車速率之研究¬,國立交通大學運輸科技與管理學系研究所碩士論文。
[11]陳建名,2004,“有GPS資訊提供下之公車旅行時間之研究,國立交通大學運輸科技與管理學系研究所碩士論文。
[12]陳進傳、林啟豐、王政彥、吳權哲,2009,“高速公路旅行時間預測驗證成果,中華技術季刊,第83期。
[13]陳錦星,2008,“建立號誌化道路旅行時間推估模式,淡江大學運輸管理學系研究所碩士論文。
[14]黃文鑑、范志煌、楊峻武,2009,“智慧型交通資訊整合分析平台,中華技術季刊,第81期。
[15]黃守琮,2004,“運用探針車與偵測器資料融合估計車輛旅行時間之研究,淡江大學運輸管理學系研究所碩士論文。
[16]簡誌良,「利用探針車空間分佈特性推估號誌化道路旅行時間之研究」,淡江大學運輸管理學系研究所碩士論文,民國97年。
[17]Bajwa, S.I., Chung, E. and Kuwahara, M., 2005, “Performance Evaluation of An Adaptive Travel Time Prediction Model, Proc. of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 1000-1005.
[18]Basir, O.A. and Shen, H.C., 1992, “Sensory Data Integration: A Team Consensus Approach, Proc. of the 1992 IEEE International Conference on Robotics and Automation, pp. 1683-1688.
[19]Boukerche, A., Oliveira, H.A.B.F., Nakamura, E.F. and Loureiro A.A.F., 2008, “Vehicular Ad Hoc Networks: A New Challenge for Localization-Based Systems, Elsevier Computer Communication, Vol. 31, No. 12, pp. 2838-2849.
[20]Chien, S.I.J. and Kuchipudi, C.M., 2003, “Dynamic Travel Time Prediction with Real-time and Historic Data, Journal of Transportation Engineering, Vol.129, No. 6, pp. 608-616.
[21]Chung, E., 2003, “Classification of Traffic Pattern, Proc. of the 11th World Congress on Intelligent Transportation Systems, pp. 1-11.
[22]Gong, X. and Lu, Y., 2008, “Data Mining Based Research on Urban Tide Traffic Problem, Proc. of the 11th International IEEE Conference on Intelligent Transportation Systems, pp. 122-127.
[23]Hellinga, B.P. and Fu, L., 1999, “Assessing Expected Accuracy of Probe Vehicle Travel Time Report, Journal of Transportation Engineering, Vol. 125, NO. 6, pp. 524-530.
[24]Kwon, J., Coifman, B. and Bickel, P., 2007, “Day-to-Day Travel-Time Trends and Travel-Time Prediction from Loop-Detector Data, Journal of the Transportation Research Board, Vol. 1717 / 2000, pp. 120-129.
[25]Kerner, B.S., Demir, C., Herrtwich, R.G., Klenov, S.L., Rehborn, H., Aleksic ́, M. and Haug, A., 2005, “Traffic State Detection with Floating Car Data in Road Networks, Proc. of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 44-49.
[26]Kuang, A., Huang, Z., Wnag, R. and Long, K., 2008, “Level of Service Reliability in Route Guidance System, Proc. of the 11th International IEEE Conference on Intelligent Transportation Systems, pp. 1090-1094.
[27]Lee, W.H., Tseng, S.S., Shieh, J.L. and Chen, H.H., 2011, “Discovering Traffic Bottlenecks in an Urban Network by Spatiotemporal Data Mining on Location-Based Services, IEEE Transaction on Intelligent Transportation Systems, Vol. 12, No. 4, pp. 1047-1056.
[28]Lee, W.H., Tseng, S.S. and Shieh, W.Y., 2010, “Collaborate Real-time Traffic Information Generation and Sharing Framework for the Intelligent Transportation System, Elsevier Information Sciences, Vol. 180, No. 1, pp. 62-70.
[29]Lee, W.H., Tseng, S.S. and Tsai, S.H., 2009, “A Knowledge Based Real-time Travel Time Prediction System for Urban Network, Elsevier Expert System with Applications, Vol. 36, No. 3, Part1, pp. 4239-4247.
[30]Lewis, C.D., 1983, “Industrial and Business Forecasting Method, Journal of Forecasting, Vol. 2, No. 2, pp.194-196.
[31]Nanthawichit, C., Nakatsuji, T. and Suzuki, H., 2004, “Application of Probe Vehicle Data for Real-time Traffic State Estimation and Short-term Travel Time Prediction on a Freeway, Journal of the Transportation Research Board, Vol. 1855 / 2003, pp. 49-59.
[32]Schmitt, E.J. and Jula, H., 2006, “Vehicle Route Guidance Systems: Classification and Comparison, Proc. of the 11th International IEEE Conference on Intelligent Transportation Systems, pp. 242-247.
[33]Sen, A., Thakuriah, P., Zhu, X.Q. and Karr, A., 1999, “Frequency of Probe Reports and Variance of Travel Time Estimates, Journal of Transportation Engineering, Vol. 123, NO. 4, pp. 290-297.
[34]Shannon, C.E., 1948, “A Mathematical Theory of Communication, The Bell System Technical Journal, Vol. 27, pp. 379-423.
[35]Wang, Y., Beullens, P., Liu, H., Brown, D., Thornton, T. and Proud, R., 2008, “A Practical Intelligent Navigation System based on Travel Speed Prediction, Proc. of the 11th International IEEE Conference on Intelligent Transportation Systems, pp. 470-475.
[36]Webster, F.V. and Cobbe, B.M., 1996 “Traffic Signals, Road Research Technical Paper No.56, Road Research Laboratory, London, England.
[37]Wischhof, L., Ebner, A and Rohling, H., 2005, “Information Dissemination in Self-Organizing Intervehicle Networks, IEEE Transaction on Intelligent Transportation Systems, Vol. 6, No. 1, pp. 90-101.
[38]Yang, J.S., 2005, “Travel Time Prediction Using the GPS Test Vehicle and Kalman Filtering Technique, Proc. of the 2005 American Control Conference, pp. 2128-2122.
[39]Zhang, H.S., Zhang, Y., Li, Z.H. and Hu, D.C., 2004, “Spatial-Temporal Traffic Data Analysis Based on Global Data Management Using MAS, IEEE Transaction on Intelligent Transportation Systems, Vol. 5, No. 4, pp. 267-275.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top