跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭家旻
研究生(外文):Chia-MinKuo
論文名稱:探討不同退費策略下對鐵路業者營收影響之研究
論文名稱(外文):Effect of Various Refund Policies on the Railway System Operators’ Profit
指導教授:鄭永祥鄭永祥引用關係
指導教授(外文):Yung-Hsiang Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:交通管理學系碩博士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:111
中文關鍵詞:退費機制顧客價值售票策略經濟模式
外文關鍵詞:Refund policyCustomer valuationSelling strategyEconomic refund model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
台灣鐵路業之退費制度是採取全額退費及較簡單之退費步驟,相較於國外鐵路業、零售業及航空業之退費制度上仍有改善之空間。完善的退費措施可使乘客謹慎規劃行程外,對於鐵路業者而言,亦可減少因退換票所造成的座位資源浪費,並促使乘客通知業者退票以減少乘客未出現的情形。

本研究將購票及退票時間分為前後兩期,首先先以數理經濟學建構一套前期退費模式,考量鐵路業的特性如乘客價值、艙等選擇、購退票時間及退票之麻煩成本,再針對兩種不同價值顧客在兩種不同購票時間下對價格及替代品的選擇,並依不同顧客價值給予不同退費,亦針對不同顧客的購票時間及退票率進行再售及售票策略之探討;而後期退票模式則因接近列車出發時間,本研究以指數函數建立後期退費模式,並以後期退票率及退票時間作為變數,擬訂不同退票時間下所給予不同退費之方案。

在本研究之情境下,發現前期退費措施給予高價值顧客及高艙等之乘客較多退費,而在後期退費制度下,則是以退票時間給予不同退費,離列車出發時間越近則退費越少。在售票策略方面,鐵路業者對於希望在再售價格較高、退費率低以及吸引高價值顧客購票的情況之下所獲得之收益最高。
Full refund and easy cancellation procedure are offered in Taiwan railway systems. Comparing the refund policies with Japan, France and Korea, and industries in airlines and retails, this study aims to modify refund policies for the railway industries. Offering a thorough refund policy can make passengers plan their schedules carefully for customers. Otherwise, it can avoid wasting seat resources and reduce no-shows for railway companies.
This study separates two selling periods as advance and spot, and implements a refund model for advance selling period. Considering in customer valuation, fare class, ticket purchasing and cancellation time, and the hassle cost. At first, this study distinguishes two valuation customers on choosing ticket purchasing time and alternatives. Refunds are given according to customers’ valuation. Also, various ticket selling and resell strategies are discussed. Last, this study establishes spot refund policies in exponential functions according to cancellation time and cancellation rate.
Under given conditions, this study discovers that more refunds are given to high valuation customers and high fare classes under advance refund policy. And refunds are given according to the cancellation time on spot refund policy. The railway company will adopt the selling strategies on high resell price, high valuation customers and low cancellation rate for high profits.
Table of Contents I
List of Tables III
List of Figures V
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 5
1.3 Research Scope and Subjects 6
1.4 Research Framework 6
Chapter 2 Literature Review 8
2.1 Refund Policies in Various Countries’ Railway Industries 8
2.1.1 Japan 9
2.1.2 Korea 12
2.1.3 France 13
2.1.4 Taiwan 14
2.1.5 Summary 15
2.2 Characteristics of Various Industries in the Refund Policies 16
2.2.1 Retail Industries 16
2.2.2 Airline Industries 18
2.2.3 Relative Literature on the Model Construction 19
2.2.4 The Difference in this Study 23
2.3 Summary 27
Chapter 3 Methodology 29
3.1 Problem Definition 29
3.2 Research Model 30
3.2.1 Variables Assumption 31
3.2.2 Refund Policies in the Advance Selling Period 32
3.2.3 Refund Policies in the Spot Selling Period 43
3.3 Summary 45
Chapter 4 Numerical Example 46
4.1 Model Demonstration under One Seat Capacity 46
4.1.1 The Value of Key Factors 46
4.1.2 Data analysis 53
4.1.3 Fixed Price under One Seat Capacity 56
4.1.4 Sensitive Analysis 56
4.1.5 Brief Summary 59
4.2 Model Demonstration under Full Seat Capacity 60
4.2.1 Profit in each Case 61
4.2.2 Fixed Price under Full Capacity 66
4.2.3 Sensitive Analysis 68
4.3 Comparing the Refund Policies with Other Countries 71
4.3.1 Profit in each Country with the Refund Policy 72
4.3.2 Analysis 72
4.4 Spot Refund Policies in Full Seat Capacity 74
4.4.1 Spot Refund Policies in Case 1 76
4.4.2 Spot Refund Policies in Case 2 79
4.4.3 Spot Refund Policies in Case 3 and 4 81
4.4.4 Brief Summary 83
4.5 Summary 84
Chapter 5 Conclusion 86
5.1 Findings 86
5.2 Contributions 87
5.2.1 Academic Contributions 87
5.2.2 Managerial Implication 89
5.3 Limitations and Future Research 90
Appendix 91
Appendix 1:Notations 91
Appendix 2 : Revenue under fixed price with one seat capacity 93
Appendix 3 : Prices of each fare class under each case in full seat capacity 95
Appendix 4 : Revenue under each case in full seat capacity 101
Appendix 5 : Revenue under the refund policy in each country 103
Appendix 6: The refund rate under the spot refund policy 105
Reference 106
1.Botimer, T.C. (1996). Efficiency considerations in airline pricing and yield management. Transportation Research Part A, 30(4), 307-317.
2.Biyalogorsky, E., Carmon, Z., Fruchter, G.E., Gerstner, E. (1999). Research note: Overselling with opportunistic cancellations. Marketing Science, 18(4), 605-610.
3.Brumelle, S.L., McGill, J.I. (1993). Airline seat allocation with multiple nested fare classes. Operations Research, 41(1), 127-137.
4.Curry, R.E. (1990). Optimal airline seat allocation with fare classes nested by origins and destinations. Transportation Science, 24(3), 193-204.
5.Chatwin, R.E. (1998). Multiperiod airline overbooking with a single fare class. Operations Research, 46(6), 805-819.
6.Chatwin, R.E. (2000). Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices. European Journal of Operational Research, 125(1), 149-174.
7.Chen, C.C., Schwartz, Z., Vargas, P. (2011). The search for the best deal: How hotel cancellation policies affect the search and booking decisions of deal-seeking customers. International Journal of Hospitality Management, 30(1), 129-135.
8.Davis, S., Gerstner, E., Hagerty, M. (1995). Money back guarantees in retailing: Matching products to customer tastes. Journal of Retailing, 71(1), 7-22.
9.Davis, S., Hagerty, M., Gerstner, E. (1998). Return policies and the optimal level of “Hassle. Journal of Economics and Business, 50(5), 445-460.
10.Disney J. (1999), Customer satisfaction and loyalty: The critical elements of service quality. Total Quality Management, 10(4), 491-497.
11.East Japan Railway Company. Available at http://www.jreast.co.jp/index.html. Visited on October 10, 2011.
12.Fay, S., Xie, J. (2010). The economics of buyer uncertainty: Advance selling vs. probabilistic selling. Marketing Science, 29(6), 1040-057.
13.Feng, Y., Xiao, B. (2006). Integration of pricing and capacity allocation for perishable products. European Journal of Operational Research, 168(1), 17-34.
14.Frendick H. deB Harris, Jonathan P. Pinder. (1995). A revenue management approach to demand management and order booking in assemble-to-order manufacturing. Journal of Operations Management, 13(4), 299-309.
15.Gale, I.L., Holmes, T.J. (1993). Advance-purchase discounts and monopoly allocation of capacity. The America Economics Review, 83(1), 135-146.
16.Guo, L. (2009). Service cancellation and competitive refund policy. Marketing Science, 28(5), 901-907.
17.Guskey, A., Luchs, R., Min, X. (2010). The role of refund policy and complaint response time in determining customer satisfaction and repurchase intent. Journal of Applied Marketing Theory, 1(1), 1-15.
18.Heiman, A., McWilliams, B., Zilberman, D. (2001). Demonstrations and money-back guarantees: Market mechanisms to reduce uncertainty. Journal of Business Research, 54(1), 71-84.
19.Heiman, A., McWilliams, B., Zhao, J., Zilberman, D. (2002). Valuation and management of money-back guarantee options. Journal of Retailing, 78(3), 193-205.
20.Hahn, K.H., Hwang, M., Shinn, S.W. (2004). A return policy for distribution channel coordination of perishable items. European Journal of Operation Research, 152(3), 770-780.
21.Kazuhisa, I., Hisao, N., Naohiro, Y. (2001). Pricing Strategies in the E-business Age. NRI Paper, No 23, Nomura Research Institute.
22.Illiescu, D.C., Garrow, L.A., Parker, R.A. (2008). A hazard model of US airline passengers’ refund and exchange behavior. Transportation Research Part B: Methodological, 42(3), 229-242.
23.iTransports: Navigation for Transports. Available at http://www.itransport.fr/en/reseau/information-voyages-sncf. Visited on October 26, 2011.
24.Joseph K, Lemieux J. (2005), The optimal design of rebate programs. Working paper, University of Kansas.
25.Krikke H, Laan E. (2011), Last time buy and control policies with phase-out returns: A case study in plant control systems. International Journal of Production Research, 49(17), 5183-5206.
26.Korea Railroad. Available at http://www.korail.com. Visited on June 1, 2012.
27.Link, H. (2004). PEP-A yield-management scheme for rail passenger fares in Germany. Japan Railway and Transport Review, 38, 50-55.
28.Moorthy, S., Srinivasan, K. (1995). Signaling quality with a money-back guarantee: The role of transaction costs. Marketing Science, 14(4), 442-466.
29.Yoon, M. G., Lee, H. Y., Song, Y. S. (2012). Linear approximation approach for a stochastic seat allocation problem with cancellation & refund policy in airlines. Journal of Air Transport Management, 23, 41-46.
30.McCardle, K., Rajaram, K., Tang, C.S. (2004). Advance booking discount programs under retail competition. Management Science, 50(5), 701-708.
31.Modarres, M., Sharifyazdi, M. (2009). Revenue management approach to stochastic capacity allocation problem. European Journal of Operational Research, 192(2), 442-459.
32.Morales, D.R., Wang, J. (2010). Forecasting cancellation rates for services booking revenue management using data mining. European Journal of Operational Research, 202(2), 554-562.
33.Nizovtsev, D., Novshek, W. (2004). Money-back guarantees and market experimentation. International Journal of Industrial Organization, 22(7), 983-996.
34.Ng, I. (2009). A demand-based model for the advance and spot pricing of services. Journal of Product & Brand Management, 18(7), 517-528.
35.Ofek, E., Katona, Z., Sarvary, M. (2011). “Bricks and Clicks: The impact returns on the strategies of multichannel retailers. Marketing Science, 30(1), 42-60.
36.Pasternack, B.A. (1985). Optimal pricing and return policies for perishable commodities. Market Science, 27(1), 166-176.
37.Padmanabhan, V., Png, I.P.L. (1995). Return policies: Make money by making good. Sloan Management Review. 37(1). 65-72.
38.Padmanabhan, V., Png, I.P.L. (1997). Manufacturer’s returns policies and retail competition. Marketing Science, 16(1), 81-94.
39.Posselt, T., Gerstner, E., Radic, D. (2008). Rating E-tailers’ money-back guarantees. Journal of Service Research, 10(3), 207-219.
40.Ringbom, S., Shy, O. (2004). Advance booking, cancellations, and partial refunds. Economics Bulletin, 13(1), 1-7.
41.Subramanian, J., Jr. Stidham, S., Lautenbacher, C.J. (1999). Airline yield management with overbooking, cancellations, and no-shows. Transportation Science, 33(2), 147-167.
42.Shugan, S.M., Xie, J. (2000). Advance pricing of services and other implications of separating purchase and consumption. Journal of Service Research, 2(3), 227-239.
43.Shugan, S.M., Xie, J. (2005). Advance-selling as a competitive marketing tool. Intern. J. of Research in Marketing, 22(3), 351-373.
44.Suzuki, Y. (2006). The net benefit of airline overbooking. Transportation research Part E, 42(1), 1-19.
45.Sulistio, A., Kim, K.H., Buyya, R. (2008). Managing Cancellation and No-shows of Reservations with Overbooking to Increase Resource Revenue. In: Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid, Lyon, France.
46.Tang, Y. (2003). Overbooking in Airline Revenue Management. A thesis submitted for the degree of master of science department of mathematics, National University of Singapore.
47.Tang, C.S., Rajaram, K., Alptekinoglu, A., Ou, J. (2004). The benefits of advance booking discount programs: Model and analysis. Management Science, 50(4), 465-478.
48.Tien, S.L., Churchill, A.M., Ball, M.O. (2009). Quantifying the relationship between airline load factors and flight cancellation trends. Journal of the Transportation Research Board, 2106, 38-46.
49.Taiwan High Speed Rail. Available at http://www.thsrc.com.tw/en/?lc=en. Visited on October 21, 2011.
50.Taiwan Railway Administration. Available at http://www.railway.gov.tw/en/. Visited on October 21, 2011.
51.Weatherford, L.R, Bodily, S.E. (1992). A taxonomy and research overview of Perishable-asset revenue management: Yield management, overbooking and pricing. Operations Research, 40(5), 831-844.
52.Xie, J., Shugan, S.M. (2001). Electronic tickets, smart cards, and online prepayments: When and how to advance sell. Marketing Science, 20(3), 219-243.
53.Xie, J., Gerstner, E. (2007). Service escape: Profiting from customer cancellations. Marketing Science, 26(1), 18-30.
54.Xiong, J., Hansen, M. (2009). Value of flight cancellation and cancellation decision modeling: Ground delay program postoperation study. Transportation Research Record, 2106, 83-89.
55.Yeo, W.M., Yuan, X.M. (2011). Optimal inventory policy with supply uncertainty and demand cancellation. European Journal of Operational Research, 211(1), 26-34.
56.You, P.S. (2003). Dynamic pricing of inventory with cancellation demand. The Journal of the Operational Research Society, 54(10), 1093-1101.
57.You, P. (2006), Ordering and pricing of service products in an advance sales system with price-dependent demand. European Journal of Operational Research, 170(1), 57-71.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top