跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周季民
研究生(外文):Chi-MinChou
論文名稱:社群網站持續使用之研究-整合限制與歸屬關係的觀點
論文名稱(外文):An Empirical Investigation of Social Networking Sites Continuance: Integrating the Constraint-Based and Dedication-Based Relationships Perspective
指導教授:張淑昭張淑昭引用關係
指導教授(外文):Su-Chao Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:企業管理學系碩博士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:187
中文關鍵詞:資訊系統持續使用期望確認模式維持現狀偏誤理論限制基礎與歸屬基礎動機社群網站
外文關鍵詞:Information System ContinuanceExpectation-Confirmation ModelStatus Quo Bias TheoryConstraint and Dedication-Based MotivationsSocial Networking Sites
相關次數:
  • 被引用被引用:2
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:4
探討社群網站持續使用的研究雖多,但從維持現狀偏誤理論(Status Quo Bias theory)來探討影響社群網站持續使用行為意向的研究卻很少。本研究以期望確認模式(Expectation-confirmation model)為理論之架構,整合維持現狀偏誤理論之限制基礎動機(constraint-based motivations)與歸屬基礎動機(dedication-based motivations)的觀點以及動機理論來發展本研究之架構以探討影響社群網站使用者其持續使用行為意向的因素。在本研究中,限制基礎動機(使用者“必須”維繫關係)包含二個變項:「信任」(trust)與「知覺轉換成本」(perceived switching costs),而歸屬基礎動機(使用者“想要”維繫關係)包含四個變項:「滿意」(Satisfaction)、「知覺實用價值」(perceived utilitarian value)、「知覺享樂價值」(perceived hedonic value)與「信任」。又,經由文獻探討後發現,過去先前有關社群網站的研究顯示,社群網站的主要特徵為「知覺網站互動性」(perceived SNSs interactivity)與「知覺凝聚力」(perceived cohesion)。因此,本研建議上述二個變項可做為限制基礎動機的前因變項。由於本研究的目的是探討社群網站持續使用的原因,所以研究對象將鎖定為網路社群網站的使用者。各個變項的之操作型定義及其量表係以過去文獻為基礎並參考實際社群網站的情況來發展出適合本研究的衡量題項,以李克特七點尺度進行衡量。由於網路社群使用者對於網路環境的使用並不陌生,所以本研究將採用網路問券方式來蒐集資料。本研究將以結構方程模型(structural equation model; SEM)針對所蒐集而來的問卷進行資料分析。本研究將利用SPSS 13.0與AMOS 7.0來驗證研究架構,並採用最大概似估計法(maximum likelihood Estimation; MLE)進行參數估計。
分析結果發現,相較於「知覺實用價值」而言,「知覺享樂價值」對「社群網站持續使用行為意向」與「滿意」的直接影響效果是最大的;而相較於「知覺享樂價值」而言,「知覺實用價值」對「信任」的直接影響效果是最大的。「知覺轉換成本」對「社群網站持續使用行為意向」的直接影響效果僅次於「知覺享樂價值」,具有第二大的直接影響效果,其直接影響效果則是高於「滿意」對「社群網站持續使用行為意向」的直接影響效果。「滿意」的前因變項有「信任」、「知覺實用價值」與「知覺享樂價值」,其中,「信任」對「滿意」的直接影響效果最大。「知覺轉換成本」的前因變項有「知覺網站互動性」、「知覺凝聚力」、「信任」與「滿意」,其中,「知覺凝聚力」對「知覺轉換成本」的直接影響效果最大。
研究結果顯示,「滿意」、「信任」及「知覺轉換成本」在「知覺網站互動性」、「知覺凝聚力」與「社群網站持續使用行為意向」間之關係上有完全的中介效果,而對於「知覺實用價值」、「知覺享樂價值」與「社群網站持續使用行為意向」間之關係上有部份的中介效果。
研究結果亦顯示,「社群網站類型(分成Facebook與non-Facebook使用者二類)」對於「信任」與「社群網站持續使用行為意向」間關係以及對於「知覺轉換成本」與「社群網站持續使用行為意向」間關係具有干擾效果。「社群網站使用(分成使用時間少於一個小時的「低使用者」與使用時間高於一個小時的「高使用者」)二類」對於「信任」與「社群網站持續使用行為意向」間關係以及對於「滿意」與「社群網站持續使用行為意向」間關係具有干擾效果。「使用頻率」(分成「極少使用及每週數次」、「至少每天使用一次」及「每天數次」等三類使用者)對於「知覺享樂價值」與「社群網站持續使用行為意向」間關係以及對於「信任」與「滿意」間關係具有干擾效果。
本研究提出二個精簡結構模型(parsimony structural models),並與本研究所提出的研究架構比較模型的配適度指標(goodness-of-fitness)。分析結果發現,本研究所提出的研究架構的配適度指標優於二個精簡結構模型,因此建議採用本研究所提出的研究架構。
Recently, research on the content of Social networking sites (SNSs) has emerged as important in IS literature. However, only few studies on SNSs post-adoption have examined post-adoption continuance of SNSs utilizing the Status Quo Bias (SQB) theory. This study adopted expectation-confirmation model, integrated constraint and dedication-based motivations from the SQB theory, and motivation theory to develop a comprehensive framework of online users’ intentions to continue using SNSs. Constraint-based motivations (SNSs users “have to” stay in the relationship) consist of two variables, trust and perceived switching costs. Dedication-based motivations (SNSs users “want to” stay in the relationship) consist of four variables, satisfaction, perceived utilitarian value, perceived hedonic value, and trust. Based on prior SNSs studies, the key characteristics of SNSs, perceived website interactivity and perceived cohesion, have been selected as determinants of constraint-based motivations.
Regarding the perceived utilitarian and hedonic values, the findings showed that the perceived hedonic value plays a more important role in determining SNSs users’ continuance intention and satisfaction while perceived utilitarian value plays a more important role in determining SNSs users’ trust. The results indicated that perceived switching costs rather than satisfaction is the second strongest predictor of SNSs users’ continuance intention to participate in a specific SNS. Trust, rather than perceived utilitarian and perceived hedonic values, is a more important determinant of a user’s satisfaction with a specific SNS. Perceived cohesion appears to have a greater effect on perceived switching costs compared to perceived website interactivity, trust, and satisfaction.
The study found that satisfaction, trust, and perceived switching costs fully mediate the relationship between perceived SNSs interactivity and continuance intention as well as perceived cohesion and continuance intention. Meanwhile, satisfaction, trust, and perceived switching costs partially mediated the effect of perceived hedonic value and perceived utilitarian value on continuance intention.
In addition, the findings also showed that SNSs typologies (Facebook and non-Facebook users) moderate the effect of trust on continuance intention and perceived switching costs on continuance intention. SNSs usage (“low”= time spent less than 1 hour, and “high”=time spent over 1 hour) moderated the effects of trust and satisfaction on continuance intention. Three different types of frequencies (“seldom & several times a week”, “at least once a day”, and “several times a day”) moderated the effect of perceived hedonic value on continuance intention and the effect of trust on satisfaction.
Two parsimonious structural models were proposed and evaluated relative to the proposed research model. According to the tests of the goodness-of-fit, the proposed research model demonstrated a better fit to the data compared to the two parsimonious structural models.
Abstract I
Abstract (In Chinese) III
Acknowledgements (In Chinese) V
List of Tables IX
List of Figures XII
Chapter One Introduction 1
1.1 Research background and motivations 1
1.2 Research objectives 5
1.3 The organization of this study 6
Chapter Two Literature Review 7
2.1 Social networking sites (SNSs) 7
2.1.1 Definitions and typologies of SNSs 7
2.1.2 SNSs in Taiwan 10
2.2 Motivation theory 10
2.3 Expectation-confirmation model (ECM) 12
2.4 Status Quo Bias (SQB) theory 34
2.5 Perceived SNSs interactivity 42
2.6 Perceived cohesion 44
Chapter Three Research Framework 47
3.1 Theoretical framework 47
3.2 Hypotheses development 55
3.2.1 Drivers of continuance intention: Dedication-based and constraint-based influences 55
3.2.2 Interrelationships between the drivers of continuance intention 63
3.2.3 Relationship between and antecedents of constraint-based influences 66
3.2.4 Satisfaction, trust, and perceived switching costs as mediators 69
3.2.5 Control variables 70
Chapter Four Methodology 72
4.1 Research setting 72
4.2 Measurement development 75
4.3 Pretest and pilot test 77
4.4 Sampling plan and data collection 79
4.5 Methods of data analysis 81
Chapter Five Data Analysis and Results 83
5.1 Analysis of demographics 83
5.2 Instrument reliability 88
5.3 Instrument validity 93
5.3.1 Content validity 94
5.3.2 Criteria-related validity 94
5.3.3 Construct validity 95
5.4 Hypotheses Testing 108
5.5 Testing the roles of mediators 111
5.6 Cross-subgroup comparison 113
5.7 Test of parsimony model 127
Chapter Six Discussion and Conclusion 132
6.1 Discussion of findings 132
6.2 Implications 135
6.2.1 Implications for theory and research 135
6.2.2 Implications for practice 138
6.3 Limitations and future research directions 140
6.4 Conclusion 142
References 147
Appendix 167
Appendix A. Questionnaire containing the measures of the research variables 168
Appendix B. Pilot test questionnaire instrument 170
Appendix C. Final questionnaire instrument 178
1.Ajzen, I. (1991), “The theory of planned behavior, Organizational Behavior and Human Decision Processes, Vol. 50 No. 2, pp. 179-211.
2.Akter, S., D’Ambra, J., & Ray, P. (2011), “Trustworthiness in mHealth information services: An assessment of a hierarchical model with mediating and moderating effects using Partial Least Squares (PLS), Journal of the American Society for Information Science and Technology, Vol. 62 No. 1, pp. 100-116.
3.Alarcón-del-Amo, M., Lorenzo-Romero, C. L., & Gómez-Borja, M. (2011), “Classifying and profiling social networking site users: A latent segmentation approach, Cyberpsychology, Behavior, and Social Networking, Vol. 14 No. 9, pp. 547-553.
4.Anderson, J. C. & Gerbing, D. W. (1988), “Structural equation modeling in practice: A review and recommended two-step approach, Psychological Bulletin, Vol. 103 No. 3, pp. 411-423.
5.Anderson, J. C. & Narus, J. A. (1990), “A model of distributor firm and manufacturer firm working partnerships, Journal of Marketing, Vol. 54 No. 1, pp. 42-58.
6.Anderson, E. W. & Sullivan, M. W. (1993), “The antecedents and consequences of customer satisfaction for firms, Marketing Science, Vol. 12 No. 2, pp. 125–143.
7.Bagozzi, R. P. & Yi, Y. (1988), “On the evaluation structural equation models, Journal of the Academy of Marketing Science, Vol. 16 No. 1, pp. 74-94.
8.Bagozzi, R. P., Yi, Y., & Phillips, L. W., (1991), “Assessing construct validity in organizational research, Administrative Science Quarterly, Vol.36 No.3, pp.421-458.
9.Baker, R. K. & White, K. M. (2010), “Predicting adolescents’ use of social networking sites from an extended theory of planned behaviour perspective, Computers in Human Behavior, Vol. 26 No. 6, pp. 1591-1597.
10.Barnes, S. J. & Böhringer, M. (2011), “Modeling use continuance behavior in microblogging services: The case of Twitter, Journal of Computer Information Systems, Vol. 51 No. 4, pp. 1-10.
11.Beatson, A., Lings, I., & Gudergan, S. (2008), “Employee behaviour and relationship quality: Impact on customers, The Service Industries Journal, Vol. 28, No. 2, pp. 211-223.
12.Bentler, P. M., & Bonett, D. G. (1980), “Significance tests and goodness of fit in the analysis of covariance structures, Psychological Bulletin, Vol. 88 No.3, pp. 588-606.
13.Bern, D. J. (1972), “Self-perception theory, In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 6). New York: Academic Press, pp. l-62.
14.Bendapudi, N. & Berry, L. L. (1997), “Customers’ motivations for maintaining relationships with service providers, Journal of Retailing, Vol. 73 No. 1, pp. 15-37.
15.Bhattacherjee, A. (2001a), “An empirical analysis of the antecedents of electronic commerce service continuance, Decision Support Systems, Vol. 32 No. 2, pp. 201-214.
16.Bhattacherjee, A. (2001b), “Understanding information systems continuance: An expectation-confirmation model, MIS Quarterly, Vol. 25 No. 3, pp. 351-370.
17.Bhattacherjee, A., Perols, J., & Sanford, C. (2008), “Information technology continuance: A theoretic extension and empirical test, Journal of Computer Information Systems, Vol. 49 No. 1, pp. 17-26.
18.Bollen, K. A. (1989), “Structural equations with latent variables, New York: Wiley.
19.Bollen, K. & Hoyle, R. (1990), “Perceived cohesion: A conceptual and empirical examination Social Forces, Vol. 69 No. 2, pp. 479-504.
20.Boon, S. D. & Holmes, J. G. (1991), “The dynamics of interpersonal trust: Resolving uncertainty in the face of risk, In R.A. Hinde & J. Groebel (Eds.), Cooperation and prosocial behavior (pp. 190-211). New York: Cambridge University Press.
21.Boonen, L. H. M. M., Donkers, B., & Schut F. T. (2011), “Channeling consumers to preferred providers and the impact of status quo bias: does type of provider matter?, Health Services Research, Vol. 46 No. 2, pp. 510-530.
22.Boyd, D. & Ellison, N. (2007), “Social network sites: Definition, history, and scholarship, Journal of Computer-Mediated Communication, Vol. 13 No. 1, pp. 210-230
23.Bressler, S. E. (2000), “Communities of commerce: Building internet business communities to accelerate growth, minimize risk, and increase customer loyalty, New York: McGraw-Hill.
24.Brislin, R. W. (1970), “Back-translation for cross-cultural research, Journal of Cross-Cultural Psychology, Vol. 1 No.3, pp. 185-216.
25.Brown, I. & Jayakody, R. (2009), “B2C e-Commerce success: A test and validation of a revised conceptual model, The Electronic Journal Information Systems Evaluation Volume, No. 12 No. 2, pp129-148.
26.Brown, A. L. & Kagel, J. H. (2009), “Behavior in a simplified stock market: The status quo bias, the disposition effect and the ostrich effect, Annals of Finance, Vol. 5 No. 1, pp. 1-14.
27.Carmines, E. G. & Zeller, R.A. (1991), “Reliability and validity assessment, Newbury Park: Sage Publications.
28.Casaló, L. V., Flavián, C., & Guinalíu, M. (2007), “The impact of participation in virtual brand communities on consumer trust and loyalty: The case of free software, Online Information Review, Vol. 31 No. 6, pp. 775-792.
29.Casaló, L. V., Flavián, C., & Guinalíu, M. (2008), “Promoting consumer’s participation in virtual brand communities: A new paradigm in branding strategy, Journal of Marketing Communications, Vol. 14 No. 1, pp. 19-36.
30.Casaló, L. V., Flavián, C., & Guinalíu, M. (2011), “New members’ integration: Key factor of success in online travel communities, Journal of Business Research, In Press, doi:10.1016/j.jbusres.2011.09.007.
31.Chang, H. H. & Chen, S. W. (2008), “The impact of customer interface quality, satisfaction and switching costs on e-loyalty: Internet experience as a moderator, Computers in Human Behavior, Vol. 24 No. 6, pp. 2927-2944.
32.Chang, H. H. & Chen, S. W. (2009), “Consumer perception of interface quality, security, and loyalty in electronic commerce, Information & Management, Vol. 46 No. 7, pp. 411-417
33.Chang, K. K.- L., Hsu, P. S., & Lin, C.- P. (2009), “A qualitative integration of self-determination theory and expectation-confirmation theory using physical education as an example, Quality & Quantity, Vol. 43 No. 6, pp. 977-981.
34.Chang, E. C. & Tseng, Y.- F. (2011), “Research note: E-store image, perceived value and perceived risk, Journal of Business Research, In Press, doi:10.1016/j.jbusres.2011.06.012.
35.Chang, Y. P. & Zhu, D. H. (2011), “Understanding social networking sites adoption in China: A comparison of pre-adoption and post-adoption, Computers in Human Behavior, Vol. 27 No. 5, pp. 1840-1848.
36.Chaudhuri, A. & Hoibrook, M. B. (2001), “The chain of effects from brand trust and brand affect to brand performance: The role of brand loyalty, Journat of Marketing, Vol. 65 No. 2, pp. 81-93.
37.Chaudhury, A., Mallick, D. N., & Rao, H. R. (2001), “Web channels in e-commerce, Communications of the ACM, Vol. 44 No. 1, pp. 99-104.
38.Chen, C.- W. (2010), “Impact of quality antecedents on taxpayer satisfaction with online tax-filing systems - An empirical study, Information & Management, Vol. 47 No 5-6, pp. 308-315.
39.Chen, S.- C., Chen, H.- H., & Chen, M.- F. (2009), “Determinants of satisfaction and continuance intention towards self-service technologies, Industrial Management & Data Systems, Vol. 109 No. 9, pp. 1248-1263.
40.Chen, Q., Griffith, D. A., & Shen, F. (2005), “The effects of interactivity on cross-channel communication effectiveness, Journal of Interactive Advertising, Vol. 5 No. 2, pp. 30-44.
41.Cheung, C. M. K. & Lee, M. K. O. (2006), “Understanding consumer trust in internet shopping: A multidisciplinary approach, Journal of the American Society for Information Science and Technology, Vol. 57 No. 4, pp. 479-492.
42.Chiaramonte, P. & Martinez, E. (2006). “Jerks in space, New York: The New York Post.
43.Chin, W. W. (2000), “Frequently asked questions–Partial least squares & PLS-graph, Available: http://disc-nt.cba.uh.edu/chin/plsfaq.htm.
44.Chiou, J.- S. & Pan, L.- Y. (2009), “Antecedents of internet retailing loyalty: Differences between heavy versus light shoppers, Journal of Business & Psychology, Vol. 24 No. 3, pp. 327-339.
45.Chiou, J.- S. & Shen, C.- C. (2006), “The effects of satisfaction, opportunism, and asset specificity on consumers’ loyalty intention toward internet portal sites, International Journal of Service Industry Management, Vol. 17 No. 1, pp. 7-22.
46.Chiu, C.- M., Chang, C.- C., Cheng, H.- L., & Fang, Y.- H. (2009), “Determinants of customer repurchase intention in online shopping, Online Information Review, Vol. 33 No. 4, pp. 761-784.
47.Chiu, C.- M., Chiu, C.- S., & Chang, H.- C. (2007), “Examining the integrated influence of fairness and quality on learners’ satisfaction and Web-based learning continuance intention, Information Systems Journal, Vol. 17 No. 3, pp. 271-287.
48.Chiu, C.- M., Lin, H.- Y., Sun, S.- Y., & Hsu, M.- H. (2009), “Understanding customers’ loyalty intentions towards online shopping: An integration of technology acceptance model and fairness theory, Behaviour & Information Technology, Vol. 28 No. 4, pp. 347-360.
49.Chiu, C.- M., Sun, S.- Y., Sun, P.- C., & Ju, T. L. (2007), “An empirical analysis of the antecedents of web-based learning continuance, Computers & Education, Vol. 49 No.4, pp. 1224-1245.
50.Cho, V. (2006), “A study of the roles of trusts and risks in information-oriented online legal services using an integrated model, Information & Management, Vol. 43 No. 4, pp. 502-520.
51.Cho, V., Cheng, T. C. E., & Hung, H. (2009), “Continued usage of technology versus situational factors: An empirical analysis, Journal of Engineering and Technology Management, Vol. 26 No. 4, pp. 264-284.
52.Churchill Jr., G. A. (1995), “Marketing research: Methodological foundations, 6th ed., New York, NY: The Dryden Press.
53.Churchill Jr., G. A. & Surprenant, C. (1982), “An investigation into the determinants of customer satisfaction, Journal of Marketing Research, Vol. 19 No. 4, pp. 491-504.
54.Cottet, P., Lichtlé, M. C., & Plichon, V. (2006), “The role of value in services: A study in a retail environment, Journal of Consumer Marketing, Vol. 23 No. 4, pp. 219-227.
55.Cyr, D. (2008), “Modeling web site design across cultures: Relationships to trust, satisfaction, and e-loyalty, Journal of Management Information Systems, Vol. 24 No. 4, pp. 47-72.
56.Cyr, D., Head, M., & Ivanov, A. (2008), “Perceived interactivity leading to e-loyalty: Development of a model for cognitive-affective user responses, International Journal of Human-Computer Studies, Vol. 67 No. 10, pp. 850-869.
57.Cyr, D., Kindra, G.S., & Dash, S. (2008), “Web site design, trust, satisfaction and e-loyalty: The Indian experience, Online Information Review, Vol. 32 No. 6, pp. 773-790.
58.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989), “User acceptance of computer technology: A comparison of two theoretical models, Management Science, Vol. 35 No. 8, pp. 982-1003.
59.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992), “Extrinsic and intrinsic motivation to use computers in the workplace, Journal of Applied Social Psychology, Vol. 22 No. 14, pp. 1111–1132.
60.De Wulf, K., Odekerken-Schröder, G., & Iacobucci, D. (2001), “Investments in consumer relationships: A cross-country and cross-industry exploration, Journal of Marketing, Vol. 65 No. 4, pp. 33-50.
61.Deci, E. L. (1975), “Intrinsic motivation, New York: Plenum Press.
62.Deci, E. L. & Ryan, R. M. (1980), “The empirical exploration of intrinsic motivational processes, In L. Berkowitz (Ed.), pp. 39-80. NewYork: Academic Press.
63.Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010), “Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China, International Journal of Information Management, Vol. 30 No. 4, pp. 289-300.
64.Dwyer, C., Hiltz, S. R., & Passerini, K. (2007), “Trust and privacy concern within social networking sites: A comparison of Facebook and MySpace. Proceedings of AMCIS 2007, Keystone, CO. Retrieved February 01, 2012 from http://csis.pace.edu/~dwyer/research/DwyerAMCIS2007.pdf.
65.Ellison, N., Steinfield, C., & Lampe, C. (2007), “The benefits of Facebook ‘friends’: Exploring the relationship between college students’ use of online social networks and social capital, Journal of Computer-Mediated Communication, Vol. 12 No. 4, article 1, pp. 1143-1168.
66.Ely, R. J. (1994), “The effects of organizational demographics and social identity on relationships among professional women, Administrative Science Quarterly, Vol. 39 No. 2, pp. 203-238.
67.Erikssona, K. & Nilsson, D. (2007), “Determinants of the continued use of self-service technology: The case of Internet banking, Technovation, Vol. 27 No. 4, pp. 159-167.
68.Falk, T., Schepers, J., Hammerschmidt, M., & Bauer, H. H. (2007), “Identifying cross-channel dissynergies for multichannel service providers, Journal of Service Research, Vol. 10 No. 2, pp. 143-160.
69.Ferlander, S. & Timms, D. (1999), “Computer-supported community networks and social cohesion, 1st Regional Telematics Conference. Session No. 3b. Tanum, June, 1999. Retrieved February 01, 2012 from http://www.schema.stir.ac.uk/Conf/Tanum/tanumpaper.doc.
70.Festinger, L. (1957), “A theory of cognitive dissonance, Stanford: Stanford University Press.
71.Figallo, C. (1998), “Internet world: hosting web communities, New York: John Wiley and Sons.
72.Fishbein, M. & Ajzen, I. (1975), “Belief, attitude, intention, and behavior: An introduction to theory and research, Reading, MA: Addison-Wesley.
73.Fornell, C. & Larcker, D. F. (1981), “Evaluating structural equation models with unobservable variables and measurement error, Journal of Marketing Research, Vol. 18 No. 1, pp. 39-50.
74.Gagné, M. & Deci, E. L. (2005), “Self-determination theory and work motivation, Journal of Organizational Behavior, Vol. 26 No. 4, pp. 331-362.
75.Gefen, D. (2000), “E-commerce: The role of familiarity and trust, Omega, Vol. 28 No. 6, pp. 725-737.
76.Gefen, D., Karahanna, E., & Straub, D. W. (2003), “Trust and TAM in online shopping: An integrated model, MIS Quarterly, Vol. 27 No. 1, pp. 51-90.
77.Goodhue, D. L. & Thompson, R. L. (1995), “Task-technology fit and individual performance, MIS Quarterly, Vol. 19 No. 2, pp. 213-236.
78.Gu, J.- C., Fan, L., Suh, Y. H., & Lee, S.- C. (2010), “Comparing utilitarian and hedonic usefulness to user intention in multipurpose information systems, Cyberpsychology, Behavior, and Social Networking, Vol. 13 No. 3, pp. 287-297.
79.Gummerus, J. Liljander, V. Pura, M., & van Riel, A. (2004), “Customer loyalty to content-based Web sites: The case of an online health care service, Journal of Services Marketing, Vol. 18 No. 2/3, pp. 175-186.
80.Gupta, S. & Kim, H.- W. (2007), “The moderating effect of transaction experience on the decision calculus in on-line repurchase, International Journal of Electronic Commerce, Vol. 12 No. 1, pp. 127-158.
81.Ha, H.- Y. & Janda, S. (2008), “An empirical test of a proposed customer satisfaction model in e-services, Journal of Services Marketing, Vol. 22 No. 5, pp. 399-408.
82.Ha, H.- Y., Janda, S., & Muthaly, S. K. (2010), “A new understanding of satisfaction model in e-re-purchase situation, European Journal of Marketing, Vol. 44 No. 7/8, pp. 997-1016.
83.Ha, H.- Y., Muthaly, S. K., & Akamavi, R. K. (2010), “Alternative explanations of online repurchasing behavioral intentions: A comparison study of Korean and UK young customers, European Journal of Marketing, Vol. 44 No. 6, pp. 874-904.
84.Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998), “Multivariate data analysis (5th ed.), Prentice Hall: New Jersey.
85.Hagel, J. & Armstrong, A. (1997), “Net gain: Expanding markets through virtual communities, Boston, MA: Harvard Business School Press.
86.Hayduck, L. A. (1987), “Structural equation modeling with LISREL, Baltimore, MD: Johns Hopkings University Press.
87.Ho, S.- H. & Huang, C.- H. (2009), “Exploring success factors of video game communities in hierarchical linear modeling: The perspectives of members and leaders, Computers in Human Behavior, Vol. 25 No. 3, pp. 761-769.
88.Ho, S.- C., Ting, P.- H., Bau, D.- Y., & Wei, C.- C. (2011), “Knowledge-sharing intention in a virtual community: A study of participants in the Chinese wikipedia, CyberPsychology, Behavior & Social Networking, Vol. 14 No. 9, pp. 541-545.
89.Hoelter J. W., (1983), “The analysis of covariance structures: Goodness-of-fit indices, Sociological Methods and Research, Vol. 11, pp. 325-344.
90.Hong, S., Kim, J., & Lee, H. (2008), “Antecedents of use-continuance in information systems: Toward an integrative view, The Journal of Computer Information Systems, Vol. 48 No. 3, pp. 61-73.
91.Hong, W., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2011), “User acceptance of agile information systems: A model and empirical test, Journal of Management Information Systems, Vol. 28 No. 1, pp. 235-272.
92.Hong, S.- J., Thong, J. Y. L., Moon, J. Y., & Tam, K. Y. (2008), “Understanding the behavior of mobile data services consumers, Information Systems Frontiers, Vol. 10 No. 4, pp. 431-445.
93.Hsieh, J. J. P.- A., Rai, A., & Keil, M. (2008), “Understanding digital inequality: Comparing continued use behavioral models of the socio-economically advantaged and disadvantaged, MIS Quarterly, Vol. 32 No. 1, pp. 97-126.
94.Hsu, M.- H. & Chiu, C.- M. (2004), “Predicting electronic service continuance with a decomposed theory of planned behaviour, Behaviour & Information Technology, Vol. 23 No. 5, pp. 359-373
95.Hsu, C.- L. & Lu, H.- P. (2007), “Consumer behavior in online game communities: A motivational factor perspective, Computers in Human Behavior, Vol. 23 No. 3, pp.1642-1659.
96.Hsu, M.- H., Yen, C.- H., Chiu, C.- M., & Chang, C.- M. (2006), “A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior, International Journal of Human-Computer Studies, Vol. 64 No. 9, pp. 889-904.
97.Hsu, L.-C. & Wang, C.- H. (2008), “A study of E-trust in online auctions, Journal of Electronic Commerce Research, Vol. 9 No. 4, pp. 310-321.
98.Hu, P. J.- H., Brown, S. A., Thong, J. Y. L., Chan, F. K. Y., & Tam, K. Y. (2009), “Determinants of service quality and continuance intention of online services: The case of eTax, Journal of the American Society for Information Science and Technology, Vol. 60 No. 2, pp. 292-306.
99.Hu, T., Poston, R. S., & Kettinger, W. J. (2011), “Nonadopters of online social network services: Is it easy to have fun yet? Communications of the Association for Information Systems, Vol. 29 No. 1, pp. 441-458.
100.Hung, H. & Cho, V. (2008), “Continued usage of e-learning communication tools: a study from the learners' perspective in Hong Kong, International Journal of Training and Development, Vol. 12 No. 3, pp. 171-187.
101.Jarvenpaa, S. L., Shaw, T. R., & Staples, D. S. (2004), “Toward contextualized theories of trust: The role of trust in global virtual teams, Information Systems Research, Vol. 15 No. 3, pp. 250-267.
102.Jin, X.- L., Cheung, C. M. K., Lee, M. K. O., & Chen, H.- P. (2009), “How to keep members using the information in a computer-supported social network, Computers in Human Behavior, Vol. 25 No. 5, pp. 1172-1181.
103.Jin, X.- L., Lee, M. K. O., & Cheung, C. M. K. (2010), “ Predicting continuance in online communities: Model development and empirical test, Behaviour & Information Technology, Vol. 29 No. 4, pp. 383-394.
104.Johnson, D. & Grayson, K. (2005), “Cognitive and affective trust in service relationships, Journal of Business Research, Vol. 58 No. 4, pp. 500-507.
105.Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E, (2000), “Switching barriers and repurchase intentions in services, Journal of Retailing, Vol. 76 No. 2, pp. 259–274.
106.Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2002), “Why customers stay: measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes, Journal of Business Research, Vol. 55 No. 6, pp. 441-450.
107.Jőreskog K. G. & Sőrbom D. (1989), “LISREL7: Users’ reference guide, Chicago, IL: Scientific Software International.
108.Kahneman, D. & Tversky, A. (1979), “Prospect theory: An analysis of decision under risk, Econometrica, Vol. 47 No. 2, pp. 263-292.
109.Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991), “The endowment effect, loss aversion and status quo bias, Journal of Economic Perspectives, Vol. 5 No. 1, pp. 193-206.
110.Kaiser, H. F. (1960), “The application of electronic computers to factor analysis, Educational and Psychological Measurement, Vol. 20, pp. 141-151.
111.Kang, Y. S., Hong, S., & Lee, H. (2009), “Exploring continued online service usage behavior: The roles of self-image congruity and regret, Computers in Human Behavior, Vol. 25 No. 1, pp. 111-122.
112.Kang, Y. S. & Lee, H. (2010), “Understanding the role of an IT artifact in online service continuance: An extended perspective of user satisfaction, Computers in Human Behavior, Vol. 26 No. 3, pp. 353-364.
113.Kim, B. (2010), “An empirical investigation of mobile data service continuance: Incorporating the theory of planned behavior into the expectation–confirmation model, Expert Systems with Applications, Vol. 37 No. 10, pp. 7033-7039.
114.Kim, B. (2012), “The diffusion of mobile data services and applications: Exploring the role of habit and its antecedents, Telecommunications Policy, Vol. 36 No. 1, pp. 69-81.
115.Kim, H.- W. (2011), “The effects of switching costs on user resistance to enterprise systems implementation, IEEE Transactions on Engineering Management, Vol. 58 No. 3, pp. 471-482.
116.Kim, H.- W. & Kankanhalli, A. (2009), “Investigating user resistance to information systems implementation: A status quo bias perspective, MIS Quarterly, Vol. 33 No. 3, pp. 567-582.
117.Kim, B. & Oh, J. (2011), “The difference of determinants of acceptance and continuance of mobile data services: A value perspective, Vol. 38 No. 3, pp. 1798-1804.
118.Kim, S. S. & Son, J.- Y. (2009), “Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the context of online services, MIS Quarterly, Vol. 33 No. 1, pp. 49-70.
119.Kline, R. B. (1998), “Principles and practice of structural equation modeling, New York: Guilford Press.
120.Komiak, S. X. & Benbasat, I. (2004), “Understanding customer trust in agent-mediated electronic commerce, web-mediated electronic commerce, and traditional commerce, Information Technology and Management, Vol. 5 No. 1/2, pp. 181-207.
121.Komiak, S. Y. X. & Benbasat, I. (2006), “The effects of personalization and familiarity on trust and adoption of recommendation agents, MIS Quarterly, Vol. 30 No. 4, pp. 941-960.
122.Konana, P., & Balasubramanian, S. (2005), “The Social-Economic-Psychological model of technology adoption and usage: An application to online investing, Decision Support Systems, Vol. 39 No. 3, pp. 505-524.
123.Kuss, D. J. & Griffiths, M. D. (2011), “Online social networking and addiction - A review of the psychological literature, International Journal of Environmental Research and Public Health, Vol. 8 No. 9, pp. 3528-3552.
124.Kwon, O. & Wen Y. (2010), “An empirical study of the factors affecting social network service use, Computers in Human Behavior, Vol. 26 No. 2, pp. 254-263.
125.Lankton, N. K., Wilson, E. V., & Mao, E. (2010), “Antecedents and determinants of information technology habit, Information & Management, Vol. 47 No. 5-6, pp. 300-307.
126.Lawler, E. J. & Yoon, J. (1996), “Commitment in exchange relations: Test of a theory of relational cohesion, American Sociological Review, Vol. 61 No. 1, 89-108.
127.Lee, M. C. (2010), “Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation-confirmation model, Computers & Education, Vol. 54 No. 2, pp. 506-516.
128.Lee, T. (2005), “The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce, Journal of Electronic Commerce Research, Vol. 6 No. 3, pp. 165-180.
129.Lee, H., Choi, S. Y., & Kang, Y. S. (2009), “Formation of e-satisfaction and repurchase intention: Moderating roles of computer self-efficacy and computer anxiety, Expert Systems with Applications, Vol. 36 No. 4, pp. 7848-7859.
130.Lee, I., Choi, B., Kim, J., & Hong, S.- J. (2007), “Culture-technology fit: Effects of cultural characteristics on the post-adoption beliefs of mobile Internet users, International Journal of Electronic Commerce, Vol. 11 No. 4, pp. 11-51.
131.Lee, Y. & Kwon, O. (2011), “Intimacy, familiarity and continuance intention: An extended expectation-confirmation model in web-based services, Electronic Commerce Research and Applications, Vol. 10 No. 3, pp. 342-357.
132.Lee, E.- J., Lee, L., & Jang, J. (2011), “Internet for the internationals: Effects of internet use motivations on international students’ college adjustment, CyberPsychology, Behavior & Social Networking, Vol. 14 No. 7/8, pp. 433-437.
133.Legris, P., Ingham, J., & Collerette, P. (2003), “Why do people use information technology? A critical review of the technology acceptance model Information & Management, Vol. 40 No.3, pp. 191-204.
134.Lewis, J. D. & Weigert, A. (1985), “Trust as a social reality, Social Forces, Vol. 63 No. 4, pp. 967-985.
135.Liang, T.- P., Ho, Y.- T., Li, Y.- W., & Turban, E. (2011-2012), “What drives social commerce: The role of social support and relationship quality, International Journal of Electronic Commerce, Vol. 16 No. 2, pp. 69-90.
136.Liao, C., Palvia, P., & Chen, J.- L. (2009), “Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT), International Journal of Information Management, Vol. 29 No. 4, pp. 309-320.
137.Limayem, M. & Cheung, C. M. K. (2008), “Understanding information systems continuance: The case of Internet-based learning technologies, Information & Management, Vol. 45 No. 4, pp. 227-232.
138.Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2008), “How habit limits the predictive power of intention: The case of information systems continuance, MIS Quarterly, Vol. 31 No. 4, pp. 705-737.
139.Lin, H.- F. (2008), “Antecedents of virtual community satisfaction and loyalty: An empirical test of competing theories, Cyberpsychology & Behavior, Vol. 11 No. 2, pp. 138-144.
140.Lin, K. M. (2011), “e-Learning continuance intention: Moderating effects of user e-learning experience, Computers & Education, Vol. 56 No. 2, pp. 515-526.
141.Lin, K.- M., Chen, N.- S., & Fang, K. (2011), “Understanding e-learning continuance intention: a negative critical incidents perspective, Behaviour & Information Technology, Vol. 30 No. 1, pp. 77-89.
142.Lin, K.- Y. & Lu, H.- P. (2011), “Why people use social networking sites: An empirical study integrating network externalities and motivation theory, Computers in Human Behavior, Vol. 27 No. 3, pp. 1152-1161.
143.Lin, C. S., Wu, S., & Tsai, R. J. (2005), “Integrating perceived playfulness into expectation-confirmation model for web portal context, Information & Management, Vol. 42 No. 5, pp. 683-693.
144.Liu, C., Marchewka, J. T., Lu, J., & Yu, C.- S. (2005), “Beyond concern - a privacy-trust-behavioral intention model of electronic commerce, Information Management, Vol. 42 No. 2, pp. 289-304.
145.Lu, J., Wang, L.- Z., Yu, C.- S., & Wu, J.- Y. (2009), “E-auction web assessment model in China, Electronic Commerce Research, Vol. 9 No. 3, pp. 149-172.
146.Lu, Y., Zhao, L., & Wang, B. (2010), “From virtual community members to C2C e-commerce buyers: Trust in virtual communities and its effect on consumers purchase intention, Electronic Commerce Research and Applications, Vol. 9 No. 4, pp. 346-360.
147.MacCallum, R. C., Browne, M. W., & Sugawara, H. W. (1996), “Power analysis and determination of sample size for covariance structure modeling, Psychological Methods, Vol. 1, pp. 130-149.
148.Marsh, H. W. & Hocevar, D. (1985), “Application of confirmatory factor analysis to the study of self-concept: First- and higher order factor models and their invariance across groups Psychological Bulletin, Vol. 97 No.3, pp. 562-582.
149.Marshall, G. (1994), “Oxford Concise Dictionary of Sociology, Oxford: Oxford University Press.
150.Mathieson, K. (1991), “Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior, Information Systems Research, Vol. 2 No. 3, pp.173-191.
151.Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995), “An integrative model of organizational trust, Academy of Management Review, Vol. 20 No. 3, pp. 709-734.
152.McKnight, D. H. & Chervany, N. L. (2002), “What trust means in E-commerce customer relationships: An interdisciplinary conceptual typology, International Journal of Electronic Commerce, Vol. 6 No. 2, pp. 35-59.
153.McKnight, D. H., Cummings, L. L., & Chervany, N. L. (1998), “Initial trust formation in new organizational relationships, Academy of Management Review, Vol. 23 No. 3, pp. 473-490.
154.McMillan, S. J. & Hwang, J.- S. (2002), “Measures of perceived interactivity: An exploration of the role of direction of communication, user control, and time in shaping perceptions of interactivity, Journal of Advertising, Vol. 31 No. 3, pp. 29-42.
155.Mitchell, D. G. (1968), “A Dictionary of Sociology, London: Routledge & Kegan Paul.
156.Mitręga, M. & Katrichis, J. M. (2010), “Benefiting from dedication and constraint in buyer–seller relationships, Industrial Marketing Management, Vol. 39 No. 4, pp. 616-624.
157.Morgan, R. M., & Hunt, S. (1994), “The commitment-trust theory of relationship marketing, Journal of Marketing, Vol. 58 No. 1, pp. 20-38.
158.Naidoo, R. & Leonard, A. (2007), “Perceived usefulness, service quality and loyalty incentives: Effects on electronic service continuance, South African Journal of Business Management, Vol. 38 No. 3, pp. 39-48.
159.Ng, E. H. & Kwahk, K. Y. (2010), “Examining the determinants of Mobile Internet service continuance: A customer relationship development perspective, International Journal of Mobile Communications, Vol. 8 No. 2, pp. 210-229.
160.Nunnally, J. C. & Bernstein, I. H. (1994), “Psychometric theory, 3rd ed., New York, NY: McGraw-Hill.
161.Odekerken-Schröder, G. & Bloemer, J. (2004), “Constraints and dedication as drivers for relationship commitment: An empirical study in a health-care context, Journal of Relationship Marketing, Vol. 3 No. 1, pp. 35–52.
162.Oliver, R. L. (1980), “A cognitive model for the antecedents and consequences of satisfaction, Journal of Marketing Research, Vol. 17 No. 4, pp. 460–469.
163.Overby, J. W. & Lee, E.- J. (2006), “The effects of utilitarian and hedonic online shopping value on consumer preference and intentions, Journal of Business Research, Vol. 59 No. 10-11, pp. 1160-1166.
164.Pagani, M., Hofacker, C. F., & Goldsmith, R. E. (2011), “The influence of personality on active and passive use of social networking sites, Psychology & Marketing, Vol. 28 No. 5, pp. 441-456.
165.Pahnila, S. & Warsta, J. (2010), “Online shopping viewed from a habit and value perspective, Behaviour & Information Technology, Vol. 29 No. 6, pp. 621-632.
166.Pavlou, P. A., & Gefen, D. (2005), “Psychological contract violation in online marketplaces: Antecedents, consequences, and moderating role, Information Systems Research, Vol. 16 No.4, pp. 372–399.
167.Pelling, E. L. & White, K. M. (2009), “The theory of planned behavior applied to young people’s use of social networking web sites, CyberPsychology & Behavior, Vol. 12 No. 6, pp. 135-142.
168.Ping, R. (1993), “The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism, and neglect, Journal of Retailing, Vol. 69 No. 3, pp. 320-352.
169.Polites, G. L. & Karahanna, E. (2012), “Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance, MIS Quarterly, Vol. 36 No. 1, pp. 21-42.
170.Premkumar, G. & Bhattacherjee, A. (2008), “Explaining information technology usage: A test of competing models, Omega, Vol. 36 No. 1, pp. 64-75.
171.Ridings, C. M., Gefen, D., & Arinze, B. (2002). “Some antecedents and effects of trust in virtual communities, Journal of Strategic Information Systems, Vol. 11 No. 3-4, pp. 271-295.
172.Roca, J. C., Chiu, C.- M., & Martínez, F. J. (2006), “Understanding e-learning continuance intention: An extension of the Technology Acceptance Model, International Journal of Human-Computer Studies, Vol. 64 No. 8, pp. 683-696.
173.Roca, J. C. & Gagné, M. (2008), “Understanding e-learning continuance intention in the workplace: A self-determination theory perspective, Computers in Human Behavior, Vol. 24 No. 4, pp. 1585-1604.
174.Rowley, J. & Slack, F. (2001), “Leveraging customer knowledge - profiling and personalization in e-business, International Journal of Retail & Distribution Management, Vol. 29 No. 9, pp. 409-416.
175.Ryan, R. M. & Deci, E. L. (2000a), “Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being, American Psychologist, Vol. 55 No. 1, pp. 68-78.
176.Ryan, R. M. & Deci, E. L. (2000b), “Intrinsic and extrinsic motivations: Classic definitions and new directions, Contemporary Educational Psychology, Vol. 25 No. 1, pp. 54-67.
177.Salo, J. & Karjaluoto, H. (2007), “A conceptual model of trust in the online environment, Online Information Review, Vol. 31 No. 5, pp. 604-621.
178.Samuelson, W. & Zeckhauser, R. (1988), “Status quo bias in decision making, Journal of Risk and Uncertainty, Vol. 1 No. 1, pp. 7-59.
179.Sanchez-Franco, M. J., Ramos, A. F. V., & Velicia, F. A. M. (2009), “The moderating effect of gender on relationship quality and loyalty toward Internet service providers, Information & Management, Vol. 46 No. 3, pp. 196-202.
180.Schlenker, B. R., Helm, B., & Tedeschi, J. T. (1973), “The effects of personality and situational variables on behavioral trust, Journal of Personality and Social Psychology, Vol. 25 No. 3, pp. 419-427.
181.Scott, J. E. (1994), “The measurement of information systems effectiveness: Evaluating a measuring instrument, In Proceedings of the fifteenth international conference on information systems (pp. 111–128). Vancouver, BC.
182.Shaw, M.E. (1981), “Group dynamics: The psychology of small group behavior, New York: McGraw-Hill.
183.Shen, Y.- C., Huang, C.- Y., Chu, C.- H., & Liao, H.- C. (2010), “Virtual community loyalty: An interpersonal-interaction perspective, International Journal of Electronic Commerce, Vol. 15 No. 1, pp. 49-73.
184.Shih, H.- P. (2008), “Continued use of a Chinese online portal: An empirical study, Behaviour & Information Technology, Vol. 27 No. 3, pp. 201-209.
185.Shiue, Y.- C., Chiu, C.- M., & Chang, C.- C. (2010), “Exploring and mitigating social loafing in online communities, Computers in Human Behavior, Vol. 26 No. 4, pp. 768-777.
186.Sledgianowski, D. & Kulviwat, S. (2009), “Using social network sites: The effects of playfulness, critical mass and trust in a hedonic context, Journal of Computer Information Systems, Vol. 49 No. 4, pp. 74-83.
187.Song, J. H. & Zinkhan, G. M. (2008), “Determinants of perceived web site interactivity, Journal of Marketing, Vol. 72 No. 2, pp. 99-113.
188.Spaulding, T. J. (2010), “How can virtual communities create value for business?, Electronic Commerce Research and Applications, Vol. 9 No. 1, pp. 38-49.
189.Special, W. P. & Li-Barber, K. T. (2012), “Self-disclosure and student satisfaction with Facebook, Computers in Human Behavior, Vol. 28 No. 2, pp. 624-630.
190.Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996), “A re-examination of the determinants of consumer satisfaction, Journal of Marketing, Vol. 60 No. 3, pp. 15-32.
191.Steuer, J. (1992), “Defining virtual reality: Dimensions determining telepresence, Journal of Communication, Vol. 42 No. 4, pp. 73-93.
192.Taiwan Network Information Center (2011), “A survey on broadband usage in Taiwan, Retrieved April 12, 2012. Available from: http://www.twnic.net.tw/download/200307/1101f.pdf.
193.Tajfel, H. (1972), “Social Categorisation - English manuscript of “La Categorisation Sociale, In S. Moscovici (Ed.), Introduction a la Psychologie Sociale (Vol. 1). Paris: Larousse.
194.Tajfel, H. (1981), “Human groups and social categories studies in social psychology, Cambridge: Cambridge University Press.
195.Taylor, D. G. & Strutton, D. (2010), “Has e-marketing come of age? Modeling historical influences on post-adoption era Internet consumer behaviors, Journal of Business Research, Vol. 63 No. 9-10, pp. 950-956.
196.Thong, J. Y. L., Hong, S.- J., & Tam, K. Y. (2006), “The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance, International Journal of Human-Computer Studies, Vol. 64 No. 9, pp. 799-810.
197.Trusov, M., Bodapati, A. V., & Bucklin, R. E. (2010), “Determining influential users in internet social networks, Journal of Marketing Research, Vol. 47 No. 4, pp. 643-658.
198.Tsai, H.- T. & Huang, H.- C. (2007), “Determinants of e-repurchase intentions: An integrative model of quadruple retention drivers, Information & Management, Vol. 44 No. 3, pp, 231-239.
199.Tsai, H.- T. & Huang, H.- C. (2009), “Online consumer loyalty: Why e-tailers should seek a high-profile leadership position, Computers in Human Behavior, Vol. 25 No. 6, pp. 1231-1240.
200.Tsai, H.- T., Huang, H.- C., & Chiu, Y.- L. (2012), “Brand community participation in Taiwan: Examining the roles of individual-, group-, and relationship-level antecedents, Journal of Business Research, Vol. 65 No. 5, pp. 676-684.
201.Tsai, H.- T., Huang, H.- C., Jaw, Y.-L., & Chen, W.-K. (2006), “Why on-line customers remain with a particular E-retailer: An integrative model and empirical evidence, Psychology & Marketing, Vol. 23 No. 5, pp. 447-464.
202.Turel, O., Yuan, Y., & Connelly, C. E. (2008), “In justice we trust: Predicting user acceptance of e-customer services, Journal of Management Information Systems, Vol. 24 No. 4, pp. 123-151.
203.Turner, J. C. (1982), ‘‘Towards a cognitive redefinition of the social group,’’ In H. Tajfel (ed.) Social identity and intergroup relations. Cambridge: Cambridge University Press, pp: 15-40.
204.TWNIC (2011), “A Survey on broadband usage in Taiwan, Taiwan: Taiwan Network Information Center.
205.van der Heijden, H. (2004), “User acceptance of hedonic information systems, MIS Quarterly, Vol. 28 No.4, pp. 695-704.
206.Vatanasombut, B., Igbaria, M., Stylianou, A.C., & Rodgers, W. (2008), “Information systems continuance intention of web-based applications customers: The case of online banking, Information & Management, Vol. 45 No. 7, pp. 419-428.
207.Venkatesh, V. & Goyal, S. (2010), “Expectation disconfirmation and technology adoption: Polynomial modeling and response surface analysis, MIS Quarterly, Vol. 34 No. 2, pp. 281-303.
208.Venkatesh, V., Morris, M. G., & Ackerman, P. L. (2000), “A longitudinal field investigation of gender differences in individual technology adoption decision-making processes, Organizational Behavior and Human Decision Processes, Vol. 83 No. 1, pp. 33-60.
209.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003), “User acceptance of information technology: Toward a unified view, MIS Quarterly, Vol. 27 No. 3, pp. 425-478.
210.Wang, E. S.- T. (2010), “Internet usage purposes and gender differences in the effects of perceived utilitarian and hedonic value, Cyberpsychology, Behavior, and Social Networking, Vol. 13 No. 2, pp. 179-183.
211.Wang, L. C., Baker, J., Wagner, J. A., & Wakefield, K. (2007), “Can a retail web site be social?, Journal of Marketing, Vol. 71 No. 7, pp. 143-157.
212.Wang, J.- C. & Chiang, M.- J. (2009), “Social interaction and continuance intention in online auctions: A social capital perspective, Decision Support Systems, Vol. 47 No. 4, pp. 466-476.
213.Wang, F. & Head, M. (2007), “How can the Web help build customer relationships? An empirical study on e-tailing, Information & Management, Vol. 44 No. 2, pp. 115–129.
214.Watson, S. & Hewett, K. (2006), “A multi-theoretical model of knowledge transfer in organizations: determinants of knowledge contribution and knowledge reuse, Journal of Management Studies, Vol. 43 No. 2, pp. 141-173.
215.Weiss, S. (2009), “Privacy threat model for data portability in social network applications, International Journal of Information Management, Vol. 29 No. 4, pp 249-254.
216.Wellman, B. (1997), “An electronic group is virtually a social network, In S. Kiesler (ed.), The Culture of the Internet. Hillsdale, NJ: Lawrence Erlbaum.
217.Wen, C., Prybutok, V. R., & Xu, C. (2011), “An integrated model for customer online repurchase intention, Journal of Computer Information Systems, Vol. 52 No. 1, pp. 14-23.
218.Wu, G. (2006), “Conceptualizing and measuring the perceived interactivity of websites, Journal of Current Issues and Research in Advertising, Vol. 28 No. 1, pp. 87-104.
219.Wu, J.- J., Chen, Y.- H., & Chung, Y.- S. (2010), “Trust factors influencing virtual community members: A study of transaction communities, Journal of Business Research, Vol. 63 No. 9-10, pp. 1025-1032.
220.Wu, G., Hu, X., & Wu, Y. (2010), “Effects of perceived interactivity, perceived web assurance and disposition to trust on initial online trust, Journal of Computer-Mediated Communication, Vol. 16 No. 1, pp. 1-26.
221.Wu, W.- Y., Lin B., & Cheng, C.- F. (2009), “Evaluating online auction strategy: A theoretical model and empirical exploration, Journal of Computer Information Systems, Vol. 49 No. 3, pp. 22-30.
222.Wu, G., Hu, X. & Wu, Y. (2010), “Effects of perceived interactivity, perceived web assurance and disposition to trust on initial online trust, Journal of Computer-Mediated Communication, Vol. 16 No. 1, pp. 1-26.
223.Wu, J.- H., Wang, S.- C., & Tsai, H.- H. (2010), “Falling in love with online games: The uses and gratifications perspective, Computers in Human Behavior, Vol. 26 No. 6, pp. 1862-1871.
224.Yang, K. (2010), “Determinants of US consumer mobile shopping services adoption: Implications for designing mobile shopping services, Journal of Consumer Marketing, Vol. 27 No. 3, pp. 262-270.
225.Yang, H.-E., Wu, C.- C., & Wang, K.- C. (2009), “An empirical analysis of online game service satisfaction and loyalty, Expert Systems with Applications, Vol. 36 No. 2, pp. 1816-1825.
226.Yeh, Y.S. & Li, Y.-M. (2009), “Building trust in m-commerce: Contributions from quality and satisfaction, Online Information Review, Vol. 33 No. 6, pp. 1066-1086.
227.Yen, C.- H. & Lu, H.- P. (2008a), “Effects of e-service quality on loyalty intention: An empirical study in online auction, Managing Service Quality, Vol. 18 No. 2, pp. 127-146.
228.Yen, C.- H. & Lu, H.- P. (2008b), “Factors influencing online auction repurchase intention, Internet Research, Vol. 18 No. 1, pp. 7-25.
229.Yen, H. R., Hsu, S. H.- Y., & Huang, C.- Y. (2011), “Good soldiers on the Web: Understanding the drivers of participation in online communities of consumption, International Journal of Electronic Commerce, Vol. 15 No. 4, pp. 89-120.
230.Yoon, S. (2002), “The antecedents and consequences of trust in online-purchase decisions, Journal of Interactive Marketing, Vol. 16 No. 2, pp. 47-63.
231.Zeelenberg, M. (1999), “Anticipated regret, expected feedback and behavioral decision making, Journal of Behavioral Decision Making, Vol. 12 No. 2, pp. 93-106.
232.Zhang, Y. Fang, Y., Wei, K.- K., & Chen, H. (2010), “Exploring the role of psychological safety in promoting the intention to continue sharing knowledge in virtual communities, International Journal of Information Management, Vol. 30 No. 5, pp. 425-436.
233.Zhou, T. & Lu, Y. (2011), “Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience, Computers in Human Behavior, Vol. 27 No. 2, pp. 883-889.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊