跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭竹婷
研究生(外文):Chu-TingKuo
論文名稱:改質轉爐石捕捉二氧化碳之研究
論文名稱(外文):Study on CO2 capture by modified BOF slag
指導教授:陳燕華陳燕華引用關係
指導教授(外文):Yen-Hua Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:125
中文關鍵詞:轉爐石胺根改質二氧化碳捕捉
外文關鍵詞:BOF slagamine-modificationCO2 capture
相關次數:
  • 被引用被引用:1
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
自工業革命以來二氧化碳的排放量一直有逐年增加的趨勢,減少二氧化碳的排放議題便顯得格外重要。經由鋼鐵製造過程中會伴生大量的轉爐石,為將轉爐石資源化再利用,本研究利用轉爐石富含游離氧化鈣與矽酸二鈣的成分作為捕捉二氧化碳的成份;並以胺根材料(MEA/EDA、3-CPAHCL)加以改質轉爐石,以提升捕捉二氧化碳之能力。
實驗結果顯示:游離氧化鈣與矽酸二鈣在溼式環境下會與二氧化碳反應形成碳酸鈣,隨溫度升高可提升反應速率;在相對濕度75%,低溫25℃中每克轉爐石對二氧化碳有最佳吸附量37.4 mg,SEM、EDS與FTIR等儀器分析出反應後產物為具方解石相與霰石相之碳酸鈣。另外,胺根改質之轉爐石在適當濕度下確實有較佳的二氧化碳捕捉量(56.54mg)。
MEA/EDA胺根材料對轉爐石以20倍重量比改質具有最佳二氧化碳吸附效果。以TG/DTA進行二氧化碳捕捉實驗,發現每克轉爐石可捕捉17.1 mg之二氧化碳;其中隨胺根材料濃度提升,對二氧化碳之吸附量有明顯增加之趨勢;但在多次二氧化碳吸/脫附循環下其吸附能力衰減至30%~50%。3-CPAHCL改質之轉爐石在吸/脫附過程中能承受較高的溫度,隨循環反應次數上升並無明顯衰減之情況。利用SEM、EDS與FTIR檢測反應後之產物,發現胺根材料捕捉二氧化碳會形成RNHCOO- RNH3+與碳酸鈣成分,表示胺根改質之轉爐石其對二氧化碳之吸附機制有兩種:一為轉爐石中氧化鈣與矽酸二鈣成分,另一個為表面改質之胺根官能基,這些成份會與二氧化碳進行反應,達到捕捉二氧化碳之目的。
本研究指出:轉爐石確實可有效減量二氧化碳,達到資源化再利用之經濟價值,且在轉爐石表面加以胺根官能基修飾,更可有效提升對二氧化碳之捕捉量。故建議可再針對此題目深入研究。
After industrial revolution, the CO2 emission to the atmosphere has gradually increased, therefore it is more important to reduce the CO2 discharge. A large number of BOF slags are produced along with the manufacturing process from steel industries. In this study, BOF slags are reused to capture CO2 by their composition of free-CaO and Larnite. Moreover, BOF slags are modified with MEA, EDA, and 3-CPAHCL to enhance the ability of CO2 adsorption.
The results show that BOF slags can react with CO2 into calcium carbonate in the wet environment and the CO2 adsorption efficiency increases with the increasing reaction temperature. It has the most adsorption capacity of 37.4 CO2(mg)/BOF slag(g) in the relative humidity of 75% at room temperature. It is observed that the final products are calcium carbonates with calcite and aragonite phases from SEM, EDS, and FTIR measurements. In addition, the amine-modified BOF slag has better CO2 capacity (56.54 CO2(mg)/BOF slag(g)) in the appropriate humid environment.
The BOF slags with amine-modification (MEA/EDA : Slag = 20 : 1) has the best CO2 adsorption capacity of 17.1 CO2(mg)/BOF slag(g) from TG/DTA analysis. The CO2 adsorption efficiency increases with an increase of amine-concentrations. However, the CO2 adsorption efficiency decays 30~50% after several sorption/desorption cycles. 3-CPAHCL modified BOF slag has no significant change with multiple reaction cycles due to its tolerance of high temperature. It shows that BOF slags with amine-modification can react with CO2 to form the products of RNH+ RNHCOO- and CaCO3 by SEM, EDS, and FTIR results. This means the compositions of free-CaO, Larnite and amine-composition in the BOF slags play the important roles to capture CO2 gases.
This study suggests that BOF slags can effectivly reduce CO2 emission to achieve the goal of recycling. Moreover, amine-modified BOF slags can efficiently promote the CO2 adsorption capacity. It indicates this topic can be deeply studied in the future.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 X
圖目錄 XI
第一章 前言 1
1-1 研究動機 1
1-2 二氧化碳捕捉與封存技術 3
第二章 文獻回顧與實驗目的 8
2-1 鋼鐵爐石 8
2-1-1 鋼鐵爐石來源之簡介 8
2-1-2 轉爐石的基本特性 9
2-1-3 爐石資源化再利用 12
2-2 二氧化碳吸附原理 14
2-2-1 吸附理論 14
2-2-2 等溫吸附模式 14
2-2-3 爐石捕捉二氧化碳之機制 18
2-2-4 影響吸附效果之因子 22
2-2-5 文獻比較 23
2-3 利用醇胺法捕捉二氧化碳 25
2-3-1 捕捉二氧化碳之機制 26
2-3-2 胺根材料 29
2-3-3 前人文獻之比較 32
第三章 研究方法與實驗儀器 34
3-1 實驗與研究方法 34
3-1-1 實驗設計流程 34
3-1-2 胺根改質 36
3-2 實驗儀器簡介 43
3-2-1 X光粉末繞射儀 43
3-2-2 掃描式電子顯微鏡 44
3-2-3 能量散佈能譜儀 44
3-2-4 比表面積分析儀 45
3-2-5 熱重─熱差分析儀 49
3-2-6 傅立葉轉換紅外線光譜儀 49
3-2-7 X光螢光分析儀 50
3-3 研究相關之藥品材料 52
第四章 實驗結果 53
4-1 轉爐石基本特性 54
4-1-1 X光粉末繞射之結果 54
4-1-2 掃描式電子顯微鏡之結果 57
4-1-3 熱重─熱差分析之結果 59
4-1-4 傅立葉轉換紅外線光譜之結果 60
4-1-5 比表面積分析之結果 61
4-2 轉爐石捕捉二氧化碳 64
4-2-1 反應前後二氧化碳吸附量變化 64
4-2-2 X光粉末繞射之結果 65
4-2-3 熱重─熱差分析儀之結果 68
4-2-4 掃描式電子顯微鏡之結果 69
4-2-5 傅立葉轉換紅外光譜儀之結果 69
4-3 胺根改質之轉爐石基本特性分析 72
4-3-1 傅立葉轉換紅外線光譜之結果 72
4-3-2 掃描式電子顯微鏡之結果 75
4-3-3 比表面積分析之結果 78
4-3-4 以熱重─熱差分析改質樣品之熱穩定性 84
4-4 胺根改質之轉爐石對二氧化碳吸附分析 86
4-4-1 熱重─熱差分析之結果 86
4-4-2 掃描式電子顯微鏡之結果 92
4-4-3 傅立葉轉換紅外光譜之結果 92
4-4-4 多次二氧化碳吸/脫附循環之結果 98
4-5 改質轉爐石在溼式環境中吸附二氧化碳之研究 103
4-5-1 相對溼度對胺根改質轉爐石之吸附能力的影響 103
4-5-2 固液比對胺根改質轉爐石之吸附能力的影響 103
4-6 文獻比較 107
第五章 結論 109
5-1 轉爐石吸附二氧化碳 109
5-2 胺根改質轉爐石吸附二氧化碳 111
5-3 改質轉爐石在溼式環境中對二氧化碳之吸附 112
參考文獻 114
附錄一 123
附錄二 124
Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., and Idema, R., 'Kinetics Ofthe Reactive Absorption Ofcarbon Dioxide in High CO2-Loaded, Concentrated Aqueous Monoethanolamine Solutions', Chemical Engineering Science, 58, 5195 – 5210, 2003.
Asavapisit, S., Fowler, G., and Cheeseman, C.R., ' Solution Chemistry During Cement Hydration in the Presence of Metal Hydroxide Wastes', Cement and Concrete Research, 27, 1249-1260, 1997.
Baciocchia, R., Costaa, G., Polettinib, A., and R., Pomib, 'Influence of Particle Size on the Carbonation of Stainless Steel Slag for CO2 Storage', Energy Procedia, 1, 4859-4866, 2009.
Bao, W., and Li, H., 'Synthesis of Aragonite Superstructure from Steelmaking Slag Via Indirect CO2 Mineral Sequestration', World Academy of Science, Engineering and Technology, 65, 2012.
Barinov, S. M., Rau, J. V., Cesaro, S. N., Durisin, J., Fadeeva, I. V., Ferro, D., Medvecky, L., and Trionfetti, G., 'Carbonate Release from Carbonated Hydroxyapatite in the Wide Temperature Rage', Journal of Materials Science-Materials in Medicine, 17, 597-604, 2006.
Barker, R., 'The Reversibility of the Reaction CaCO3-CaO+ CO2', J. appl. Chem. Biotechnol., 23, 133-142, 1973.
Barrett, E.P., Joyner, L.G., and Halenda, P.P., 'The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms', American Chemical Society, 73, 373-380, 1951.
Benson, S. M., and Surles, T., 'Carbon Dioxide Capture and Storage: An Overview with Emphasis on Capture and Storage in Deep Geological Formations', Proceedings of the Ieee, 94, 1795-1805, 2006.
Bonenfant, D., Kharoune, L., Sauve, S., Hausler, R., Niquette, P., Mimeault, M., and Kharoune, M., 'Molecular Analysis of Carbon Dioxide Adsorption Processes on Steel Slag Oxides', International Journal of Greenhouse Gas Control, 3, 20-28, 2009.
Boutin, A., Coasne, B., Fuchs, A. H., Galarneau, A., and Di Renzo, F., 'Experiment: And Theory of Low-Pressure Nitrogen Adsorption in Organic Layers Supported or Grafted on Inorganic Adsorbents: Toward a Tool to Characterize Surfaces of Hybrid Organic/Inorganic Systems', Langmuir, 28, 9526-9534, 2012.
Chan, S.C., and Leh, F., 'Octahedral Cobalt(III) Complexes of the Chloropentammine Type. Part V.* the Preparation and Properties of Some Co-Ordination Compounds of Cobalt(III) Containing Halogen Derivatives of Primary Aliphatic Amines as Ligands.', Journal of the Chemical Society, 760-766, 1966.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J., 'Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model', Nature, 408, 184-187, 2000.
Czepirski, L., Balys, M. R., and Komorowska-Czepirska, E., 'Some Generalization of Langmuir Adsorption Isotherm', Internet Journal of Chemistry, 3, 30-59, 2000.
Dantas, T.L.P., Amorim, S.M., Luna, F.M.T., Silva Jr., I.J., de Azevedo, D.C.S. , Rodrigues, A.E., and Moreira, R.F.P.M., 'Adsorption of Carbon Dioxide onto Activated Carbon and Nitrogen-Enriched Activated Carbon: Surface Changes, Equilibrium, and Modeling of Fixed-Bed Adsorption', Separation Science and Technology, 45, 73-84, 2010.
Del Bubba, M., Arias, C. A., and Brix, H., 'Phosphorus Adsorption Maximum of Sands for Use as Media in Subsurface Flow Constructed Reed Beds as Measured by the Langmuir Isotherm', Water Research, 37, 3390-3400, 2003.
Elton, L. R. B., and Jackson, D. F., 'X-Ray Diffraction and Bragg Law', American Journal of Physics, 34, 1036-1038, 1966.
Ferrira, E.B., and Zanotto, E.D., 'Glass and Glass-Ceramic from Basic Oxygen Furnace (BOF) Slag', Glass Science and Technology, 75, 2002.
Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaria, J., and Fierro, J. L. G., 'Biodiesel from Sunflower Oil by Using Activated Calcium Oxide', Applied Catalysis B-Environmental, 73, 317-326, 2007.
Gray, M. L., Soong, Y., Champagne, K. J., Baltrus, J., Stevens, R. W., Toochinda, P., and Chuang, S. S. C., ' CO2 Capture by Amine-Enriched Fly Ash Carbon Sorbents', Separation and Purification Technology, 35, 31-36, 2004.
Hao, S. Y., Xiao, Q. A., Yang, H., Zhong, Y. J., Pepe, F., and Zhu, W. D., 'Synthesis and CO2 Adsorption Property of Amino-Functionalized Silica Nanospheres with Centrosymmetric Radial Mesopores', Microporous and Mesoporous Materials, 132, 552-558, 2010.
Hayashi, H., Taniuchi, J., Furuyashiki, N., Sugiyama, S., Hirano, S., Shigemoto, N., and Nonaka, T., 'Efficient Recovery of Carbon Dioxide from Flue Gases of Coal-Fired Power Plants by Cyclic Fixed-Bed Operations over K2CO3-on-Carbon', Ind. Eng. Chem. Res., 37, 185-191, 1998.
Herzog, H., 'Carbon Sequestration Via Mineral Carbonation: Overview and Assessment', MIT Laboratory for Energy and the Environment, 2002.
Herzog, 'The Economics and Politics of Climate Change-Carbon Dioxide Capture and Storage', Oxford University Press, 2009.
Herzog, H., Drake, E., and Adams, E., ' CO2 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change', Energy Laboratory, Massachusetts Institute of Technology, 22-24, 1997.
Hiyoshi, N., Yogo, K., and Yashima, T., 'Adsorption of Carbon Dioxide on Amine Modified SBA-15 in the Presence of Water Vapor', Chemistry Letters, 33, 510-511, 2004.
Hiyoshi, 'Adsorption Characteristics of Carbon Dioxide on Organically Functionalized SBA-15', Microporous and Mesoporous Materials, 84, 357-365, 2005.
Holloway, S., 'Carbon Dioxide Capture and Geological Storage', Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 365, 1095-1107, 2007.
Houshmand, A., Daud, W. M. A. W., Lee, M. G., and Shafeeyan, M. S., 'Carbon Dioxide Capture with Amine-Grafted Activated Carbon', Water Air and Soil Pollution, 223, 827-835, 2012.
Irabien, A., Viguri, J. R., and Ortiz, I., 'Thermal Dehydration of Calcium Hydroxide. 1. Kinetic Model and Parameters', Industrial & Engineering Chemistry Research, 29, 1599-1606, 1990.
Kowalczyk, P., Terzyk, A.P., Gauden, P.A., Solarz L., 'Numerical nalysis of Horvath–Kawazoe equation', Computers and Chemistry, 26, 125-130, 2002.
Kwong, K.S. , Bennett, J., Krabbe, R., Petty, A., and Thomas, H., 'Thermodynamic Calculations Predicting MgO Saturated EAF Slag for Use in Eaf Steel', The Minerals, Metals & Materials Society, 2, 2009.
Lake, L.W., Enhanced Oil Recovery, 1989.
Li, P., Ge, B., Zhang, S., Chen, S., Zhang, Q., and Zhao, Y., ' CO2 Capture by Polyethylenimine-Modified Fibrous Adsorbent', Langmuir, 24, 6567-6574, 2008.
Li, X. M., Bertos, M. F., Hills, C. D., Carey, P. J., and Simon, S., 'Accelerated Carbonation of Municipal Solid Waste Incineration Fly Ashes', Waste Management, 27, 1200-1206, 2007.
Lim, M., Han, G. C., Ahn, J. W., and You, K. S., 'Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology', International Journal of Environmental Research and Public Health, 7, 203-228, 2010.
Liu, S. H., Wu, C. H., Lee, H. K., and Liu, S. B., 'Highly Stable Amine-Modified Mesoporous Silica Materials for Efficient CO2 Capture', Top Catal, 53, 210-217, 2010.
Lysikov, A. I., Salanov, A. N., and Okunev, A. G., 'Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation-Decomposition Cycles', Industrial & Engineering Chemistry Research, 46, 4633-4638, 2007.
Mohammadi, M., Najafpour, G. D., and Mohamed, A. R., 'Production of Carbon Molecular Sieves from Palm Shell through Carbon Deposition from Methane', Chemical Industry & Chemical Engineering Quarterly, 17, 525-533, 2011.
Papadakis, V. G., Vayenas, C. G., and Fardis, M. N., 'A Reaction-Engineering Approach to the Problem of Concrete Carbonation', Aiche Journal, 35, 1639-1650, 1989.
Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., Bigham, R. D., Connolly, M., Lee, B., Shepker, T. O., and Zak, M. A., 'Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace, and Electric Arc Furnace Steel Industry Slags', Environmental Science & Technology, 34, 1576-1582, 2000.
Puertas, F., Palacios, M., and Vazquez, T., 'Carbonation Process of Alkali-Activated Slag Mortars', Journal of Materials Science, 41, 3071-3082, 2006.
Rawlins, C. H., 'Geological Sequestration of Carbon Dioxide by Hydrous Carbonate Formation in Steelmaking Slag ', MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY, 2008.
Reddy, A. S., Pradhan, R. K., and Chandra, S., 'Utilization of Basic Oxygen Furnace (BOF) Slag in the Production of a Hydraulic Cement Binder', International Journal of Mineral Processing, 79, 98-105, 2006.
Resnik, K.P., Yeh, J.T. , and Pennline, H.W., 'Aqua Ammonia Process for Simultaneous Removal of CO2, SO2 and NOx', International Journal of Environmental Technology and Management, 4, 89-104, 2004.
Ruthven, D.M., Principles of Adsorption and Adsorption Processes Wiley, New York, 1984.
Shao, R., and Stangeland, A., 'Amines Used in CO2 Capture - Health and Environmental Impacts', 2009.
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Mosenu, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., 'Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity', Pure and Applied Chemistry, 57, 603-619, 1985.
Soong, Y., Gray, M.L., Siriwardane, R.V., and Champagne, K.J., 'Novel Amine Enriched Solid Sorbents for Carbon Dioxide Capture.', International Journal of Environmental Technology and Management, 82-88, 2004.
Subagyono, D. J. N., Liang, Z. J., Knowles, G. P., and Chaffee, A. L., 'Amine Modified Mesocellular Siliceous Foam (MCF) as a Sorbent for CO2', Chemical Engineering Research & Design, 89, 1647-1657, 2011.
Wang, X. X., Schwartz, V., Clark, J. C., Ma, X. L., Overbury, S. H., Xu, X. C., and Song, C. S., 'Infrared Study of CO2 Sorption over Molecular Basket Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve', Journal of Physical Chemistry C, 113, 7260-7268, 2009.
Wiebe, R., and Gadd, V.L., 'The Solubility of Carbon Dioxide in Water at Various Temperatures from 12 to 40' and at Pressures to 500 Atmospheres', 815-817, 1940.
Wu, S. F., Beum, T. H., Yang, J. I., and Kim, J. N., 'Properties of Ca-Base CO2 Sorbent Using Ca(OH)2 as Precursor', Industrial & Engineering Chemistry Research, 46, 7896-7899, 2007.
Xue, Y. J., Wu, S. P., Hou, H. B., and Zha, J., 'Experimental Investigation of Basic Oxygen Furnace Slag Used as Aggregate in Asphalt Mixture', Journal of Hazardous Materials, 138, 261-268, 2006.
Yeh, J.T. , Resnik, K.P., and Pennline, H.W., 'Regenerable Aqua Ammonia Process for CO2 Sequestration', Preprints - American Chemical Society, Division of Petroleum Chemistry, 49, 247-248, 2004.
Yildirim, I.Z., and Prezzi, M., 'Chemical, Mineralogical and Morphological Properties of Steel Slag', Advances in Civil Engineering, 2011.
Yousuf, M., Mollah, A., Hess, T.R., Tsai, Y.N., and Cocke, D.L., 'An Ftir and Xps Investigations of the Effects of Carbonation on the Solidification/Stabilization of Cement Based Systems-Portland Type V with Zinc', Cement and Concrete Research, 23, 773-784, 1993.
Yue, M. B., Sun, L. B., Cao, Y., Wang, Z. J., Wang, Y., Yu, Q., and Zhu, J. H., 'Promoting the CO2 Adsorption in the Amine-Containing SBA-15 by Hydroxyl Group', Microporous and Mesoporous Materials, 114, 74-81, 2008.
Zelenak, V., Badanicova, M., Halamova, D., Cejka, J., Zukal, A., Murafa, N., and Goerigk, G., 'Amine-Modified Ordered Mesoporous Silica: Effect of Pore Size on Carbon Dioxide Capture', Chemical Engineering Journal, 144, 336–342, 2008.
Zelenak, V., Halamova, D., Gaberova, L., Bloch, E., and Llewellyn, P., 'Amine-Modified SBA-12 Mesoporous Silica for Carbon Dioxide Capture: Effect of Amine Basicity on Sorption Properties', Microporous and Mesoporous Materials, 116, 358-364, 2008.
Zhuravlev, L.T., 'The Surface Chemistry of Amorphous Silica. Zhuravlev Model', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 173, 1-38, 2000.
工業技術研究院、工業安全衛生技術發展中心,物質安全資料表,2008。
中國鋼鐵股份有限公司,爐石利用推廣手冊,1994。
白曛綾,以混合醇胺溶液(MEA/AMP)去除二氧化碳溫室氣體之可行性研究,交通大學環境工程研究所,行政院國家科學委員會專題研究計畫,1999。
林敬二,紅外線光譜簡介,科學月刊雜誌社,第0141期,1981。
朱信,以胺類及氨化學吸收煙道氣二氧化碳之研究及反動力探討,成功大學環境工程學系,國科會/環保署科技合作研究計劃,1999。
林國安、吳榮章、余輝龍、宣大衡, 二氧化碳地下封存技術,鑛冶,第52卷,第2期,第17~33頁,2008。
行政院公共工程委員會,公共工程高爐石混凝土使用手冊,台北市,第46~47頁,2001。
牟金祿,蛇紋岩與鋼鐵冶煉,地質,第29卷,第3期,第50-51頁,2010。
柯明賢、呂雅湘、吳孟樺、林昌琰、吳秉輯,鋼鐵工業爐渣作為填築材料之工程特性與環境特性研究,鋼鐵工業爐渣資源化再利用實務研討會論文集,台南市,第6-1~6-23頁,2002。
莊麗津,二氧化鈦光觸媒之製備及其對鉛與銅回收之成效研究,弘光科技大學,環境與安全衛生工程系,2008。
高綾君,以爐石在高溫下去除二氧化碳之研究,國立成功大學,環境工程學系碩士論文,2009。
凌永健、王治平,X光螢光分析,材料分析,中國材料科學學會,新竹市,1998。
陳寶祺、林良專,以氨水吸收二氧化碳探討吸收與結晶現象之研究,龍華科技大學,化工與材料工程系,2008。
陳俊廷,陳信榮,轉爐石處理及應用之現況與未來,技術與訓練,第35卷,第3期,第15~22頁,2000。
郭烔輝,中鋼爐渣工程性質之研討,國立高雄應用科技大學,土木工程與防災科技研究所碩士論文,2006。
張高橋,鈣系爐渣封存二氧化碳行為之研究,國立成功大學,環境工程學系碩士論文,2008。
黃兆龍、江奇成,鋼鐵工業爐碴作為混凝土再生材料應用策略探討,鋼鐵工業爐渣資源化再利用實務研討會論文集,台南市,第3-1~3-17頁,2002。
黃昭銘,表面醇胺畫改質的吸附劑於二氧化碳的吸、脫附量測,崑山科技大學,工業技術研究院分包學界研究計畫,2008。
黃煥彩、林平全、張東源,中鋼轉爐石資源化處理及利用情形,鋼鐵工業爐渣資源化再利用實務研討會論文集,第1-1~1-23頁,2002。
楊貫一,爐石資源化─水粹高爐石再利用作為水泥混擬土材料,技術與訓練,第22卷,第3期,第118~132頁,1997。
談駿嵩、鄭旭翔,台灣在二氧化碳回收及再利用上之研究現況,化石燃料排放二氧化碳之捕捉儲存與利用技術研討會,中技社,台北市,2006。
蔣本基,新穎二氧化碳回收固定技術開發及封存技術評估利用礦物、鹼性固體廢棄物為吸附劑進行二氧化碳封存技術評估,台大環境工程研究所,環保署/國科會空污防制科研合作計畫,2006。
蘇同新,煉鋼燒結與轉爐石淋溶過程中磷賦存狀態之探討,國立成功大學,地球科學系碩士論文,2008。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top