跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志慶
研究生(外文):DelphicChen
論文名稱:背向散射電子繞射技術的空間及角度解析度之探討
論文名稱(外文):On Spatial and Angular Resolutions in Electron Backscattering Diffraction
指導教授:郭瑞昭
指導教授(外文):Jui-Chao Kuo
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:197
中文關鍵詞:背向散射墊子繞射空間解析度角度解析度深度解析度
外文關鍵詞:EBSDspatial resolutionangular resolutiondepth resolution
相關次數:
  • 被引用被引用:6
  • 點閱點閱:664
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
本論文將探討背向散射電子繞射之空間解析度與角度解析度。空間解析度的量測上,利用銀、銅、以及鋁的雙晶(bicrystals)晶體 並結合數位影像相關係數法進行量測。此外,加速電壓、探針電流、以及原子量對於空間解析度的影響也將以此進行量測,由實驗所得的結果顯示,對於擁有較輕原子量的原子(例如:鋁)而言,其縱向解析度以及側向解析度與加速電壓是有明顯的關係。較重的原子(例如:銅、銀)的解析度在加速電壓小於10kV時不會出現與電壓明顯的相關性。此外,探針電流對縱向及側向解析度的影響甚小。由實驗所得對於鋁、銅、銀的最佳側向解析度分別為40.5, 33.7, 12.1奈米。而對於此三者的最佳縱向解析度分別為74.5, 44.7, 23.3奈米。
此外,此論文中亦提出一創新之實驗設置用以量測背向散射電子繞射的深度解析度。利用傾斜的攣晶(twin)晶界來測量深度解析度,同時可以量測到電子通道效應的影響,取代傳統利用非晶質薄膜的量測方式。利用此方法所測得對於銅的最佳深度解析度為38nm( 5kV , 10nA),其數值遠大於未考慮電子通道效應的實驗設置。
對於角度解析度,本論文中開發了一種結合雙向濾波器以及晶體方位平均性質的新型濾波器。此新型濾波器可以用來提升EBSD數據的角度精準性。應用在電鍍銅以及變形的銅材料上,可以將其角度解析度由0.71° 分別提升至0.251° 與0.071°。此外,此濾波器還具有保存晶界特徵與變形後次級結構的特性。而方位雜訊也在經過一次濾波後明顯減少。

For nanoscale microstructure analysis the spatial resolution of the EBSD is of very importance. It is well known several factors affect the spatial resolution. However, until now, it lacks of a quantitative measurement of the spatial resolution. In addition to the spatial resolution the angular resolution also plays an important role in EBSD analysis technique for fine subgrain microstructures after heavy deformation. In this study, therefore, the spatial and angular resolutions of the EBSD system are investigated.
Bicrystals of silver, copper, and aluminum were combined with a digital image correlation method to investigate the physical spatial resolution of EBSD, that is, the lateral and longitudinal resolutions. At the same time the effect of accelerating voltage and probe current was systematically investigated on the physical spatial resolution for Ag, Cu, and Al, respectively. The lateral and longitudinal resolutions show high dependency on the accelerating voltage for Al. However, for Cu and Ag, the lateral and longitudinal resolution does not show such dependency on accelerating voltage as in Al for less than 10kV. Moreover, the probe current does not play a role on both lateral and longitudinal resolutions. The best lateral resolutions for Al, Cu, and Ag are 40.5, 33.7, and 12.1 nm, respectively. The best longitudinal resolutions of 74.5, 44.7, and 23.3 nm were obtained for Al, Cu, and Ag, respectively.
A novel measurement of the depth resolution in EBSD was firstly proposed. The application of a tilted twin boundary enables us to measure the depth resolution under consideration of the electron channeling effect. Considering the channeling effect, the best physical depth resolution of 38 nm for Cu was achieved at 5 kV and 10 nA which is much larger than that obtained with a coating layer.
As for the angular resolution, a new filter combining the bilateral filter and the orientation averaging was developed in this study. The proposed orientation bilateral filter has two features: preservation of boundary structures or deformed substructures and significant reduction in orientation noise after only one pass. It was implemented in this study to enhance the angular precision of orientation maps for deposited and deformed structures of pure Cu obtained from EBSD measurements. Applying the filter to the deformed and deposited structures, the relative angular accuracy is enhanced from 0.71° to 0.251° and 0.071°, respectively.

1. Introduction and objectives 1
1.1 Introduction 1
1.2 Objectives 3
2 Literature reviews 4
2.1 Introduction to EBSD 4
2.1.1 Development of EBSD 4
2.1.2 Formation of the Kikuchi band 9
2.1.3 Automatic EBSD system 11
2.2 Spatial resolutions in EBSD 13
2.2.1 Definition of spatial resolution in EBSD 13
2.2.2 Influence factors on spatial resolution 16
2.2.3 Improvements on spatial resolution 30
2.3 Angular Resolution 39
2.3.1 Definition of angular resolution 39
2.3.2 Influence factors on angular resolution 41
2.3.3 Modified Kuwahara filter 52
3 Experiments & Filter design 57
3.1 Instruments 57
3.2 Samples for measuring of lateral/longutudinal resolutions 59
3.3 Samples for measuring of depth resolution 64
3.3.1 E-beam coating method 64
3.3.2 Inclination of twin boundary method 65
3.4 Determination of the spatial resolution 68
3.4.1 Lateral and longitudinal resolutions 68
3.4.2 Depth Resolution 74
3.5 Measurement of angular resolution 78
3.6 Orientation Bilateral Filter 81
4 Results 88
4.1 Longitudinal resolution 88
4.2 Lateral resolution 94
4.3 Depth resolution 100
4.4 Angular resolution 105
4.4.1 Performance of the OBF on single crystal silicon 105
4.4.2 Performance of the OBF on strain-free sample 115
4.4.3 Performance of the OBF on strained sample 129
5 Discussions 142
5.1 Effect of the accelerating voltage 142
5.2 Effect of the probing current 153
5.3 Effect of the electron channeling 158
5.4 Image distortion in orientation mapping at high kV 160
5.5 Comparison of performance between OBF and Kuwahara filter 169
6 Conclusions 181
7 References 182
Publication List 192
Autobiography 197

[1] D.J. Prior, A.P. Boyle, F. Brenker, M.C. Cheadle, A. Day, G. Lopez, L. Peruzzo, G.J. Potts, S. Reddy, R. Spiess, N.E. Timms, P. Trimby, J. Wheeler, L. Zetterstrom, The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, Am Mineral, 84 (1999) 1741-1759.
[2] G.R. Booker, A.M.B. Shaw, M.J. Whelan, P.B. Hirsch, Some Comments on Interpretation of Kikuchi-Like Reflection Patterns Observed by Scanning Electron Microscopy, Philos Mag, 16 (1967) 1185-1191.
[3] F. Meisenkothen, R. Wheeler, M.D. Uchic, R.D. Kerns, F.J. Scheltens, Electron Channeling: A Problem for X-Ray Microanalysis in Materials Science, Microsc Microanal, 15 (2009) 83-92.
[4] S. Nishikawa, S. Kikuchi, Diffraction of cathode rays by mica, Nature, 121 (1928) 1019-1020.
[5] S. Nishikawa, S. Kikuchi, Diffraction of cathode rays by calcite, Nature, 122 (1928) 726.
[6] K. Shinohara, A Note on the Diffraction of Cathode Rays by Single Crystals, Physical Review, 47 (1935) 730-735.
[7] K. Shinohara, Diffraction of cathod rays by single crystals., Scientific Papers of the Instute of Physical and Chemical Research, 20 (1932) 39-51.
[8] R. von Meibom, E. Rupp, Wide-angle electron diffraction, Zeitschrift Für Physik, 82 (1933) 690-696.
[9] H. Boersch, About bands in electron diffraction, Physikalische Zeitschrift, 38 (1937) 1000-1004.
[10] M.N. Alam, M. Blackman, D.W. Pashley, High-Angle Kikuchi Patterns, P R Soc A, 221 (1954) 224-242.
[11] O.C. Wells, D.C. Joy, The early history and future of the SEM, Surf Interface Anal, 38 (2006) 1738-1742.
[12] D. Dingley, J.W. Steeds, Quantitative Scanning Electron Microscopy, Academic Press, London, UK, 1974.
[13] D.G. Coates, Kikuchi-like Reflection Patterns obtained with the Scanning Electron Microscope, Philos Mag, 16 (1967) 1179-1184.
[14] C.G. Van Essen, E.M. Schulson, R.H. Donaghay, Electron Channeling Patterns from Small (10 µm) Selected Areas in the Scanning Electron Microscope, Nature, 225 (1970) 847-848.
[15] J.A. Venables, C.J. Harland, Electron back-scattering patterns-A new technique for obtaining crystallographic information in the scanning electron microscope, Philos Mag, 27 (1972) 1193-1200.
[16] R. Pesci, K. Inal, S. Berveiller, E. Patoor, J.S. Lecomte, A. Eberhardt, Inter- and intragranular stress determination with Kossel microdiffraction in a scanning electron microscope, Residual Stresses Vii, 524-525 (2006) 109-114.
[17] N.H. Schmidt, N.O. Olesen, Computer-Aided Determination of Crystal-Lattice Orientation from Electron-Channeling Patterns in the Sem, Can Mineral, 27 (1989) 15-22.
[18] D.C. Joy, G.R. Booker, E.O. Fearson, M. Bevis, 1971.
[19] D. Dingley, On-line determination of crystal orientation and texture determination in an SEM, Proceedings of the Royal Microscopy Society, 19 (1984) 74-75.
[20] N.C. Krieger Lassen, D.J. Jensen, K. Conradsen, Image-Processing Procedures for Analysis of Electron Back Scattering Patterns, Scanning Microscopy, 6 (1992) 115-121.
[21] R.A. Schwarzer, Automated crystal lattice orientation mapping using a computer-controlled SEM, Micron, 28 (1997) 249-265.
[22] M.V. Kral, H.R. McIntyre, M.J. Smillie, Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis, Scripta Mater, 51 (2004) 215-219.
[23] A.J. Wilkinson, Measurement of elastic strains and small lattice rotations using electron back scatter diffraction, Ultramicroscopy, 62 (1996) 237-247.
[24] A.J. Wilkinson, G. Meaden, D.J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity, Ultramicroscopy, 106 (2006) 307-313.
[25] A.P. Day, Spherical EBSD, Journal of microscopy, 230 (2008) 472-486.
[26] J.J.L. Mulders, A.P. Day, Three-dimensional texture analysis, Icotom 14: Textures of Materials, Pts 1and 2, 495-497 (2005) 237-242.
[27] N. Zaafarani, D. Raabe, R.N. Singh, F. Roters, S. Zaefferer, Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations, Acta Mater, 54 (2006) 1863-1876.
[28] A. Deal, T. Hooghan, A. Eades, Energy-filtered electron backscatter diffraction, Ultramicroscopy, 108 (2008) 116-125.
[29] O.C. Wells, Comparison of different models for the generation of electron backscattering patterns in the scanning electron microscope, Scanning, 21 (1999) 368-371.
[30] S. Zaefferer, On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns, Ultramicroscopy, 107 (2007) 254-266.
[31] S. Zaefferer, A critical review of orientation microscopy in SEM and TEM, Cryst Res Technol, 46 (2011) 607-628.
[32] A. Winkelmann, C. Trager-Cowan, F. Sweeney, A.P. Day, P. Parbrook, Many-beam dynamical simulation of electron backscatter diffraction patterns, Ultramicroscopy, 107 (2007) 414-421.
[33] M. Tanaka, M. Terauchi, K. Tsuda, K. Saitoh, Convergent-Beam Electron Diffraction IV, JEOL, Tokyo, Japan, 2002.
[34] F.J. Humphreys, Review - Grain and subgrain characterisation by electron backscatter diffraction, J Mater Sci, 36 (2001) 3833-3854.
[35] F.J. Humphreys, Y. Huang, I. Brough, C. Harris, Electron backscatter diffraction of grain and subgrain structures - resolution considerations, J Microsc-Oxford, 195 (1999) 212-216.
[36] O. Engler, V. Randle, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, in, CRC Press, 2010.
[37] K. Kanaya, S. Okayama, Penetration and Energy-Loss Theory of Electrons in Solid Targets, J Phys D Appl Phys, 5 (1972) 43-&.
[38] J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning electron microscopy and x-ray microanalysis, 3rd ed., Kluwer Academic/Plenum Publishers, New York, 2003.
[39] J.A. Venables, C.J. Harland, Electron Back Scattering patterns - new technqiue for obtaining crystallographic information in the scanning electron microscope., Philos Mag, 27 (1973) 1193-1200.
[40] S.X. Ren, E.A. Kenik, K.B. Alexander, A. Goyal, Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation, Microsc Microanal, 4 (1998) 15-22.
[41] A. Deal, X. Tao, A. Eades, EBSD geometry in the SEM: simulation and representation, Surf Interface Anal, 37 (2005) 1017-1020.
[42] D.R. Steinmets, S. Zaefferer, Towards ultrahigh resolution EBSD by low accelerating voltage, Mater Sci Tech-Lond, 26 (2010) 640-645.
[43] D. Steinmetz, S. Zaefferer, Towards ultra-high resolution EBSD by use of low accelerating voltage, in: EBSD Conference, Chemnitz, Germany, 2009.
[44] F.J. Humphreys, I. Brough, High resolution electron backscatter diffraction with a field emission gun scanning electron microscope, J Microsc-Oxford, 195 (1999) 6-9.
[45] A. Drake, S.H. Vale, Development of an electron backscatter diffraction and microtexture measurement system., Institute of Physics Conference Series, 147 (1995) 137-140.
[46] K. Kunze, S. Buzzi, J. Löffler, J.-P. Burg, Benefit of Low Vacuum SEM for EBSD Applications, in: EMC 2008 14th European Microsocpy Ccongress, Aachen, Germany, 2008, pp. 575-576.
[47] S.M. Habesch, Electron backscattered diffraction analyses combined with environmental scanning electron microscopy: potential applications for non-conducting, uncoated mineralogical samples, Mater Sci Tech-Lond, 16 (2000) 1393-1398.
[48] M.R. Lee, M.E. Hodson, G. Langworthy, Earthworms produce granules of intricately zoned calcite, Geology, 36 (2008) 943-946.
[49] A. Sibil, T. Douillard, C. Cayron, N. Godin, M. R'mili, G. Fantozzi, Microcracking of high zirconia refractories after t -) m phase transition during cooling: An EBSD study, J Eur Ceram Soc, 31 (2011) 1525-1531.
[50] A. Perez-Huerta, M. Cusack, Optimizing electron backscatter diffraction of carbonate biominerals-resin type and carbon coating, Microsc Microanal, 15 (2009) 197-203.
[51] Y.A. Novikov, A.V. Rakov, M.N. Filippov, Beam current dependence of SEM electron probe diameter, Meas Tech+, 47 (2004) 438-442.
[52] T.C. Isabell, V.P. Dravid, Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM, Ultramicroscopy, 67 (1997) 59-68.
[53] J. Hjelen, E. Nes, Spatial resolution measurements of electron backscatter diffraction patterns (EBSPs) in the scanning electron microscope, in: L.D. Peachey, D.B. Williams (Eds.) XIIth International Congress for Electron Microscopy, San Francisco, U.S., 1990.
[54] C.J. Harland, P. Akhter, J.A. Venables, Accurate Microcrystallography at High Spatial-Resolution Using Electron Backscattering Patterns in a Field-Emission Gun Scanning Electron-Microscope, J Phys E Sci Instrum, 14 (1981) 175-182.
[55] D. Dingley, Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy, J Microsc-Oxford, 213 (2004) 214-224.
[56] C.J. Harland, J.H. Klein, P. Akhter, J.A. Venables, Electron back-scattering patterns in a field emission gun scanning electron microscope, in: J.M. Strugess (Ed.) 9th International Congress on Electron Microscopy, Microscopical Society of Canada, Toronto, Canada, 1978, pp. 564-565.
[57] A. Bhattacharyya, J.A. Eades, Use of an energy filter to improve the spatial resolution of electron backscatter diffraction, Scanning, 31 (2009) 114-121.
[58] P.T. Pinard, P. Hovington, M. Lagace, R. Gauvin, Development of Tools to Increase the Spatial Resolution of EBSD Maps, Microsc Microanal, 15 (2009) 422-423.
[59] R.C. Gonzalez, R.E. Woods, Digital image processing, Prentice Hall, 2007.
[60] V. Randle, Application of electron backscatter diffraction to grain boundary characterisation, Int Mater Rev, 49 (2004) 1-11.
[61] Y. Huang, F.J. Humphreys, Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}{001}, Acta Mater, 48 (2000) 2017-2030.
[62] F.J. Humphreys, Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD), Scripta Mater, 51 (2004) 771-776.
[63] F.J. Humphreys, Quantitative metallography by electron backscattered diffraction, J Microsc-Oxford, 195 (1999) 170-185.
[64] N.C. Krieger Lassen, The relative precision of crystal orientations measured from electron backscattering patterns, J Microsc-Oxford, 181 (1996) 72-81.
[65] D.J. Dingley, V. Randle, Microtexture Determination by Electron Back-Scatter Diffraction, J Mater Sci, 27 (1992) 4545-4566.
[66] J.W. Steeds, Convergent beam electron diffraction, Adv Imag Elect Phys, 123 (2002) 71-103.
[67] C.J. Humphreys, D.M. Maher, H.L. Fraser, D.J. Eaglesham, Convergent-Beam Imaging - a Transmission Electron-Microscopy Technique for Investigating Small Localized Distortions in Crystals, Philos Mag A, 58 (1988) 787-798.
[68] P.V.C. Hough, B.W. Powell, A Method for Faster Analysis of Bubble Chamber Photographs, Nuovo Cimento, 18 (1960) 1184-1191.
[69] C. Maurice, R. Fortunier, A 3D Hough transform for indexing EBSD and Kossel patterns, Journal of microscopy, 230 (2008) 520-529.
[70] P.V.C. Hough, Method and means for recognizing complex patterns, in, U.S., 1962.
[71] R.O. Duda, P.E. Hart, Use of the Hough Transformation To Detect Line and Curves in Pictures, Communications of ACM, 15 (1972) 11-15.
[72] A.K. Prasad, R.J. Adrian, C.C. Landreth, P.W. Offutt, Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation, Exp Fluids, 13 (1992) 105-116.
[73] B.W. Rice, M.D. Cable, M.B. Nelson, In vivo imaging of light-emitting probes, J Biomed Opt, 6 (2001) 432-440.
[74] C.G. Coates, D.J. Denvira, N.G. McHale, K.D. Thornbury, M.A. Hollywood, Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD, in: T. Wilson (Ed.) European Conference on Biomedical Optics, Munich, Germany, 2003.
[75] OIM Data Collection Manual v5.22, TexSEM Laboratories, EDAX Inc., 2009.
[76] Y.J. Chen, J. Hjelen, S.S. Gireesh, H.J. Roven, Optimization of EBSD parameters for ultra-fast characterization, J Microsc-Oxford, (2011).
[77] A.J. Wilkinson, M.B. Henderson, J.W. Martin, Examination of fatigue crack plastic zones using scanning-electron-microscope-based electron diffraction techniques, Phil Mag Lett, 74 (1996) 145-151.
[78] L. de Broglie, Waves and Quanta, Nature, 112 (1923) 540.
[79] A.J. Schwartz, Electron backscatter diffraction in materials science, 2nd ed., Springer, New York, 2009.
[80] H.J. Bunge, Texture Analysis in Materials Science, Butterworths, London, 1982.
[81] N.C. Krieger Lassen, D.J. Jensen, K. Conradsen, On the Statistical-Analysis of Orientation Data, Acta Crystallogr A, 50 (1994) 741-748.
[82] M. Humbert, N. Gey, J. Muller, C. Esling, Determination of a Mean Orientation from a Cloud of Orientations. Application to Electron Back-Scattering Pattern Measurements, J Appl Crystallogr, 29 (1996) 662-666.
[83] M. Arribas, A. Elipe, M. Palacios, Quaternions and the rotation of a rigid body, Celest Mech Dyn Astr, 96 (2006) 239-251.
[84] W.R. Hamilton, On a species of imaginary quantities connected with a theory of quaternions, Proceedings of the royal Irish Academy, 2 (1843) 424-434.
[85] S.L. Altmann, Rotations, quaternions, and double groups, Dover Publications, Mineola, N.Y., 2005.
[86] F.C. Frank, Orientation Mapping, Metall Trans A, 19 (1988) 403-408.
[87] G. Ibe, Orientation Representation on the 4-D Unit Sphere, The Analogon of The 3-D Pole Sphere, Materials Science Forum, 157-162 (1994) 369-374.
[88] D. Aberdeen, J. Baxter, Emmerald: a fast matrix-matrix multiply using Intel's SSE instructions, Concurr Comp-Pract E, 13 (2001) 103-119.
[89] F. Franchetti, S. Kral, J. Lorenz, C.W. Ueberhuber, Efficient utilization of SIMD extensions, IEEE, 93 (2005) 409-425.
[90] M. Kuwahara, K. Hachimura, S. Eiho, M. Kinoshita, Processing of radio-isotope angiocardiographic images, Plenum Press, New York, 1976.
[91] F.J. Humphreys, P.S. Bate, P.J. Hurley, Orientation averaging of electron backscattered diffraction data, Journal of microscopy, 201 (2001) 50-58.
[92] J.H. Cho, A.D. Rollett, K.H. Oh, Determination of a mean orientation in electron backscatter diffraction measurements, Metall Mater Trans A, 36A (2005) 3427-3438.
[93] Technical manual for DVC-1412 cameras, DVC Company, Austin, Texas, 2003.
[94] R. Bongeler, U. Golla, M. Kassens, L. Reimer, B. Schindler, R. Senkel, M. Spranck, Electron-Specimen Interactions in Low-Voltage Scanning Electron-Microscopy, Scanning, 15 (1993) 1-18.
[95] L. Reimer, C. Tollkamp, Measuring the Backscattering Coefficient and Secondary-Electron Yield inside a Scanning Electron-Microscope, Scanning, 3 (1980) 35-39.
[96] R.L. Lyles, S.J. Rothman, W. Jager, A Cyanide-Free solution for Electropolishing Silver, Metallography, 11 (1978) 361-363.
[97] Metallography, Structures and Phase Diagrams, 8 ed., American Society for Metals, Metals Park, OH, 1973.
[98] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, 304 (2004) 422-426.
[99] M. Humbert, N. Gey, J. Muller, C. Esling, Comment on Determination of a mean orientation from a cloud of orientations. Application to electron back-scattering pattern measurements by Humbert et al. (1996) - Response, J Appl Crystallogr, 31 (1998) 485-485.
[100] A. Godfrey, Edge preservation near triple junctions during orientation averaging of EBSP data, Scripta Mater, 50 (2004) 1097-1101.
[101] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in: Sixth International Conference on Computer Vision (ICCV'98), U.S., 1998, pp. 839-846.
[102] S.I. Wright, M.M. Nowell, EBSD image quality mapping, Microsc Microanal, 12 (2006) 72-84.
[103] F.J. Humphreys, M. Hatherly, Recrystallisation and Related Annealing Phenomena, Elsevier, Oxford, UK, 1995.
[104] B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmannwilsdorf, Overview No-96 - Evolution of Fcc Deformation Structures in Polyslip, Acta Metallurgica Et Materialia, 40 (1992) 205-219.
[105] N. Hansen, D.J. Jensen, Development of microstructure in FCC metals during cold work, Philos T Roy Soc A, 357 (1999) 1447-1469.
[106] D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, Scanning, 29 (2007) 92-101.
[107] S. Babin, S. Cabrini, S. Dhuey, B. Harteneck, M. Machin, A. Martynov, C. Peroz, Fabrication of 20 nm patterns for automatic measurement of electron beam size using BEAMETR technique, Microelectron Eng, 86 (2009) 524-528.
[108] Operation Guide of the JSM-7001F Field Emission Scanning Electron Microscope, JEOL, Tokyo, Japan, 2007.
[109] N. Yao, Z.L. Wang, Handbook of microscopy for nanotechnology, Kluwer Academic Publishers, Boston, 2005.
[110] A. Winkelmann, K. Aizel, M. Vos, Electron energy loss and diffraction of backscattered electrons from silicon, New J Phys, 12 (2010).
[111] D. Chen, G.T. Lui, J.C. Kuo, Application of edge detection method based on image quality gradient for twin detection, J Microsc-Oxford, 236 (2009) 44-51.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top