跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林穎宜
研究生(外文):Ying-YiLin
論文名稱:以聚焦離子束製作具誘發表面增顯拉曼散射之環形奈米柱陣列於微量分子探針與病毒之檢測
論文名稱(外文):Specific Ring Diameter among Nano-rods fabricated by Focused Ion Beam and Used as SERS-active Substrate for Trace Detection of Molecular Probes and Various Viruses
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:表面增顯拉曼散射聚焦離子束羅丹明6G(rhodamine 6GR6G)病毒
外文關鍵詞:surface enhanced Raman scattering (SERS)focused ion beam (FIB)rhodamine 6G (R6G)virus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用微奈米蝕刻技術製作具表面增顯拉曼活性基板為一精確且直接的方法,然而此技術除了步驟繁鎖、有化學物質殘留疑慮外,製程也不環保,因此本研究將利用物理性蝕刻技術「聚焦離子束」製作高規則性的奈米柱陣列,此製程優點為快速、再現性高,同時可依據電流大小與蝕刻時間,客製化不同規格之奈米柱陣列以應用於分子探針與病毒的檢測。
在基板的設計方面首先著重於不同參數包含幾何形狀、尺寸與間距對表面增顯拉曼效應的影響,本研究利用羅丹明6G(rhodamine 6G, R6G)分子探針進行基板表面拉曼增顯效應之評估。結果顯示當奈米柱幾何形狀具有最多邊與角,且其曲率半徑愈小時,將增強避雷針效應,進而提升表面拉曼增顯效應,而本研究中則以具最多邊角之類六邊形有較佳之SERS效果。當奈米柱尺寸由300縮小至150 nm時,可發現尺寸愈小,有效檢測區內奈米柱數越多,使得熱區之範圍增加而導到拉曼訊號增強。而兩奈米柱之間距由83減少至22 nm時,間距愈小可引發更多熱區使電磁效應提升,進而增強拉曼訊號。
本研究進一步將所設計基板應用於不同病毒檢測。藉由改變奈米柱間距,於三個奈米柱間創造尺寸不一之環形空間(ring diameter, DR),使所設計之環形空間可捕捉尺寸不同之目標病毒(DT),包含腦心肌炎病毒、腺病毒與A型流感病毒,以及四種A型流感病毒亞型。實驗結果顯示,利用聚焦離子束所製作之表面增顯拉曼活性基板可測得各目標病毒之拉曼特性峰圖譜,藉由拉曼圖譜的不同以鑑定病毒種類。當DR/DT約等於1時,因為奈米柱尖端之表面電漿子傳遞至目標病毒,可獲得最佳化圖譜。藉由本研究的分析與討論,可確認以聚焦離子束技術快速製作表面增顯拉曼活性基板的可行性,同時證明此試片具有應用於生物樣品檢測的潛力。

Due to the discovery of surface enhanced Raman scattering (SERS), Raman spectroscopy has become a highly potential biosensing technique. To avoid the chemical pollution and complicated process, in this study we aim to utilize a simple and rapid physical method, focused ion beam (FIB), for fabrication of well-ordered nano-rods arrays on Au thin film. Through adjusting different parameters we aim to obtain the best SERS-active substrate and further to apply it for detection of trace molecular probe rhodamine 6G (R6G) and viruses.
The nano-rods with different geometry, dimensions, and spacings were initially fabricated by FIB. R6G as molecular probe was chosen to estimate the effect of SERS. The results indicated higher SERS effect was appeared as dimension and spacing decreased because of more hot spot areas. In addition, we also found lighting rod effect induced by varying geometry of nano-rods also can raise electromagnetic mechanism effect to enhance signals.
Furthermore, to apply for tiny trace pathogen detection, hexagon-like Au nano-rods arrays with various spacing and the “ring diameter” (DR) created by the convergence of three nano-rods as a SERS-active substrate, were fabricated. The various dimensions of target viruses (DT), and four influenza A virus strains were taken as the major factors. The results indicated that as the ratio of DR/DT was around 1, the discrimination ability for detecting the target viruses was better because of the violent enhanced lightning rod effect surrounding the target virus.

誌謝......................................................I
摘要......................................................II
Abstract .................................................III
第一章 導論...............................................1
1.1 導論...............................................1
1.2 研究動機............................................3
1.3 研究目的............................................4
第二章 理論基礎與文獻回顧...................................6
2.1 振動光譜............................................6
2.2 拉曼光譜基本原理.....................................8
2.2.1 拉曼散射原理........................................8
2.2.2 拉曼光譜之極化誘發原理...............................10
2.3 表面增顯拉曼散射光譜.................................12
2.3.1 表面增顯拉曼散射光譜之發展與簡述.......................12
2.3.2 表面增顯拉曼散射光譜之電磁增顯機制.....................13
2.3.3 表面增顯拉曼散射光譜之化學增顯機制.....................17
2.3.4以分子探針評估SERS活性基板之特性.........................18
2.4 奈米級構對表面增顯拉曼散射之影響.......................19
2.4.1 週期性奈米結構對表面增顯拉曼散射之影響 .................20
2.4.2 奈米柱與奈米孔洞對表面增顯拉曼散射之影響................23
2.4.3 奈米級結構之幾何形狀對表面增顯拉曼散射之影響.............24
2.4.4 奈米級結構之尺寸對表面增顯拉曼散射之影響................25
2.4.5 奈米級結構之間距對表面增顯拉曼散射之影響................25
2.5 病毒..............................................26
2.5.1 待測病毒簡介.......................................26
2.5.2 表面增顯拉曼散射檢測病毒.............................28
第三章 材料與方法.........................................30
3.1 實驗設計與流程......................................30
3.1.1 實驗構想...........................................30
3.1.2 實驗設計...........................................31
3.2 實驗材料與準備......................................32
3.2.1 鍍金基板製作.......................................32
3.2.2 拉曼活性基板製作....................................33
3.2.3 分子探針溶液製備....................................34
3.2.4 病毒選用...........................................36
3.2.5 拉曼檢測與訊號處理..................................36
3.2.6 增顯因子(Enhancement factor, EF)之評估.............38
3.3 製程儀器...........................................39
3.3.1 電子束蒸鍍機.......................................39
3.3.2 雙束型聚焦離子束....................................39
3.4 分析儀器...........................................41
3.4.1 掃瞄式電子顯微鏡....................................41
3.4.2 顯微拉曼光譜儀......................................42
第四章 以聚焦離子束製作SERS活性基板應用於分子探針檢測之研究.....43
4.1 不同參數之奈米柱結構其表面形貌分析.....................44
4.1.1 以聚焦離子束製作SERS活性基板:不同幾何形狀..............44
4.1.2 以聚焦離子束製作SERS活性基板:不同尺寸..................47
4.1.3 以聚焦離子束製作SERS活性基板:不同間距..................49
4.2 R6G液滴於fibAu表面狀態之評估.........................51
4.3 不同參數之奈米柱結構對於SERS效果之影響.................53
4.3.1 拉曼光譜量測之正規化與標準流程.......................53
4.3.2 幾何形狀對於SERS效果影響之評估.......................55
4.3.3 尺寸對於SERS效果影響之評估..........................59
4.3.4 間距對於SERS效果影響之評估..........................61
4.3.5 各項參SERS活性基板之靈敏度分析.......................63
第五章 具有不同間距與環形空間之奈米柱陣列應用於不同尺寸病毒及A型流感病毒亞型之檢測..............................................65
5.1 以FIB製作不同fibAu_h試片...........................65
5.2 以分子探針評估fibAu_h試片之SERS效果.....................67
5.3 fibAu_h試片應用於三種不同病毒之檢測: SERS圖譜鑑定........70
5.4 fibAu_h試片應用於不同A型流感病毒亞型之檢測: SERS圖譜鑑定..73
5.5 病毒檢測之SERS機制探討..................................75
5.5.1 SERS訊號強度與DR/DT比值關係之探討...................75
5.5.2 病毒顆粒於fibAu_h試片上位置與SERS訊號強度關係之探討....79
第六章 結論..............................................85
參考文獻...................................................87
相關著作...................................................97
自述......................................................99


1.D. Raoult, Book review, New England Journal of Medicine, 339, 1337, 1998.
2.L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, Raman spectroscopy, Analytical Chemistry, 70, 341, 1998.
3.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Surface-enhanced Raman scattering and biophysics, Journal of Physics: Condensed Matter, 14, R597, 2002.
4.A. Campion, and P. Kambhampati, Surface-enhanced Raman scattering, Chemical Society Reviews, 27, 241, 1998.
5.S. Corni, and J. Tomasi, Studying SERS from metal nanoparticles and nanoparticles aggregates with continuum models, in Surface-Enhanced Raman Scateering : Physics and Applications, K. Katrin, M. Martin and K. Harald, Springer New York, p: 113, 2006.
6.M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy, Chemical Society Reviews, 37, 885, 2008.
7.P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annual Review of Analytical Chemistry, 1, 601, 2008.
8.K. A. Willets, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry, 58, 267, 2007.
9.K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics, Analytical and Bioanalytical Chemistry, 390, 113, 2008.
10.R. J. C. Brown, and M. J. T. Milton, Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS), Journal of Raman Spectroscopy, 39, 1313, 2008.
11.T. Shors, Laboratory diagnosis of viral diseases, in Understanding Viruses Jones and Bartlett Publishers: Sudbury, p: 106, 2009.
12.X. -M. Lin, Y. Cui, Y. -H. Xu, B. Ren, and Z. -Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues, Analytical and Bioanalytical Chemistry, 394, 1729, 2009.
13.Y. Du, L. Shi, T. He, X. Sun, and Y. Mo, SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template, Applied Surface Science, 255, 1901, 2008.
14.L. Kebin, L. Clime, B. Cui, and T. Veres, Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays, Nanotechnology, 19, 145305, 2008.
15.J. Fang, Y. Yi, B. Ding, and X. Song, A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern, Applied Physics Letters, 92, 131115, 2008.
16.B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays, Acs Nano, 3, 1190, 2009.
17.J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, Large-area nanoscale patterning:  chemistry meets fabrication, Accounts of Chemical Research, 39, 249, 2006.
18.Y. -P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays, The Journal of Physical Chemistry B, 110, 3153, 2006.
19.P. R. Griffiths, Introduction to vibrational spectroscopy, in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, John Wiley & Sons Ltd: New York, p: 33, 2002.
20.J. R. Ferrara, and K. Nakamoto, Origin of Raman spectra, in Introduction of Raman Spectroscopy (1st edition), Academic Press: Amsterdam, p: 13, 1994.
21.J. R. Ferrara, and K. Nakamoto, Selectrion rules for infrared and Raman spectra, in Introduction of Raman Spectroscopy (1st edition), Academic Press: Amsterdam, p: 22, 1994.
22.M. Moskovits, Surface-enhanced Raman spectroscopy: a brief perspective, in Surface-Enhanced Raman Scattering: physics and applications, K. Kneipp, M. Moskovits and H. Kneipp, Springer: Berlin, p: 1, 2006.
23.M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, 26, 163, 1974.
24.D. L. Jeanmaire, and R. P. Van Duyne, Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1, 1977.
25.M. G. Albrecht, and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, 99, 5215, 1977.
26.M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, The Journal of Chemical Physics, 69, 4159, 1978.
27.S. Zou, and G. C. Schatz, Coupled plasmonic plasmon/photonic resonance effects in SERS, in Surface-Enhanced Raman Scattering: physics and applications, K. Kneipp, M. Moskovits and H. Kneipp, Springer: Berlin, p: 67, 2006.
28.H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag: Berlin, p: 4, 1988.
29.吳民耀、劉威志,表面電漿子理論與模擬,物理雙月刊, 廿八卷二期, 486,2006.
30.S. Corni, and J. Tomasi, Studying SERS from metal nanoparticles and nanoparticles aggregates with continuum models, in Surface-Enhanced Raman Scattering: physics and applications, K. Kneipp, M. Moskovits and H. Kneipp, Springer: Berlin, p: 113, 2006.
31.H. J. Xu, and M. Käll, Estimating SERS properties of silver-particle aggregates through generalized Mie theory, in Surface-Enhanced Raman Scattering: physics and applications, K. Kneipp, M. Moskovits and H. Kneipp, Springer: Berlin, p: 92, 2006.
32.J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, Journal of the American Chemical Society, 130, 12616, 2008.
33.G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical 2nd-harmonic generation, Physical Review B, 30, 519, 1984.
34.G. T. Boyd, Z. H. Yu, and Y. R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Physical Review B, 33, 7923, 1986.
35.S. A. Maier, and H. A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures, Journal of Applied Physics, 98, 011101, 2005.
36.H. Ueba, Theory of charge transfer excitation in surface enhanced Raman scattering, Surface Science, 131, 347, 1983.
37.J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions, The Journal of Chemical Physics, 84, 4174, 1986.
38.A. Campion, J. E. Ivanecky Ⅲ, C. M. Child, and M. Foster, On the mechanism of chemical enhancement in surface-enhanced Raman scattering, Journal of the American Chemical Society, 117, 11807, 1995.
39.P. Hildebrandt, and M. Stockburger, Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver, The Journal of Physical Chemistry, 88, 5935, 1984.
40.Z. Lu, Y. Gu, J. Yang, Z. Li, W. Ruan, W. Xu, C. Zhao, and B. Zhao, SERS-active Ag substrate from the photo-active decomposition of electrodeposited divalent silver oxide, Vibrational Spectroscopy, 47, 99, 2008.
41.M. Mandal, N. Ranjan Jana, S. Kundu, S. Kumar Ghosh, M. Panigrahi, and T. Pal, Synthesis of Au core-Ag shell type bimetallic nanoparticles for single molecule detection in solution by SERS method, Journal of Nanoparticle Research, 6, 53, 2004.
42.R. Sancı, and M. Volkan, Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates, Sensors and Actuators B: Chemical, 139, 150, 2009.
43.D. -G. Yu, W. -C. Lin, C. -H. Lin, L. -M. Chang, and M. -C. Yang, An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates, Materials Chemistry and Physics, 101, 93, 2007.
44.G. Grundmeier, and M. Stratmann, Adehesion and de-adhesion mechanisms at polymer/metal interfaces: mechanistic understanding based on in situ studies of buried interfaces, Annual Review of Materials Research, 35, 571, 2005.
45.P. L. Chazot, and P. G. Strange, Importance of thiol groups in ligand binding to D2 dopamine receptors from brain and anterior pituitary gland, Biochemical Journal, 281, 377, 1992.
46.A. R. Macdairmid, M. C. Gallagher, and J. T. Banks, Structure of dithiothreitol monolayers on Au(111), The Journal of Physical Chemistry B, 107, 9789, 2003.
47.C. -C. Lin, Y. -M. Yang, Y. -F. Chen, T. -S. Yang, and H. -C. Chang, A new protein a assay based on Raman reporter labeled immunogold nanoparticles, Biosensors and Bioelectronics, 24, 178, 2008.
48.D. C. Daniel, M. Thompson, and N. W. Woodbury, Fluorescence intensity fluctuations of individual labeled DNA fragments and a DNA binding protein in solution at the single molecule level: a comparison of photobleaching, diffusion, and binding dynamics, The Journal of Physical Chemistry B, 104, 1382, 2000.
49.X. -M. Lin, Y. Cui, Y. -H. Xu, B. Ren, and Z. -Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues, Analytical and Bioanalytical Chemistry, 394, 1729, 2009.
50.P. N. Sisco, and C. J. Murphy, Surface-coverage dependence of surface-enhanced Raman scattering from gold Nanocubes on self-assembled monolayers of analyte, The Journal of Physical Chemistry A, 113, 3973, 2009.
51.H. J. Chen, Y. Wang, S. Dong, and E. Wang, An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 343, 2006.
52.H. Y. Jung, Y. -K. Park, S. Park, and S. K. Kim, Surface enhanced Raman scattering from layered assemblies of close-packed gold nanopardicles, Analytica Chimica Acta, 602, 236, 2007.
53.M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, Periodically structured metallic substrates for SERS, Sensors and Actuators B: Chemical, 51, 285, 1998.
54.L. -B. Luo, L. -M. Chen, M. -L. Zhang, Z. -B. He, W. -F. Zhang, G. -D. Yuan, W. -J. Zhang, and S. -T. Lee, Surface-enhanced Raman scattering from uniform gold and silver nanoparticle-coated substrates, The Journal of Physical Chemistry C, 113, 9191, 2009.
55.C. -W. Chang, J. -D. Liao, H. -C. Chang, L. -K. Lin, Y. -Y. Lin, and C. -C. Weng, Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect, Journal of Colloid and Interface Science, 358, 384, 2011.
56.C. -W. Chang, Y. -Y. Lin, C. -C. Weng, and J. -D. Liao, Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect, Sensors and Actuators B: Chemical, 153, 271, 2011.
57.C. -W. Chang, J. -D. Liao, A. -L. Shiau, and C. -K. Yao, Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate, Sensors and Actuators B: Chemical, 156, 471, 2011.
58.V. G. Kravets, F. Schedin, and A. N. Grigorenko, Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings, Physical Review B, 78, 205405, 2008.
59.J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays, Physical Review B, 79, 073412, 2009.
60.I. W. Sztainbuch, The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement, The Journal of Chemical Physics, 125, 124707, 2006.
61.N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering, Physical Review B, 65, 075419, 2002.
62.C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Analytical Chemistry, 77, 3261, 2005.
63.H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, Highly surface-roughened flower-like silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Advanced Materials, 21, 4614, 2009.
64.Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays, Nano Letters, 8, 1923, 2008.
65.Y. Du, L. Shi, T. He, X. Sun, and Y. Mo, SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template, Appl. Surf. Sci., 255, 1901, 2008.
66.Q. Liao, C. Mu, D. -S. Xu, X. -C. Ai, J. -N. Yao, and J. -P. Zhang, Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering, Langmuir, 25, 4708, 2009.
67.張家維,以陣列型奈米壓痕孔洞金基板誘發表面增顯拉曼散射應用於分子探針微量分析與病毒定性檢測之研究,國立成功大學材料科學及工程學系博士論文,p. 30,2011.
68.T. Shors, Influenza viruses, in Understanding Viruses, Jones and Bartlett Publishers: Sudbury, p: 311, 2009.
69.M. Von Itzstein, The war against influenza: discovery and development of sialidase inhibitors, Nature Reviews: Drug Discovery, 6, 967, 2007.
70.M. Harz, S. Stöckel, V. Ciobotӑ, D. Cialla, P. Rösch, and J. Popp, Applications of Raman spectroscopy to virology and microbial analysis, in Biological and Medical Physics, Biomedical Engineering: Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, Springer: Toronto, p: 441, 2010.
71.M. C. Demirel, P. Kao, N. Malvadkar, H. Wang, X. Gong, M. Poss, and D. L. Allara, Bio-organism sensing via surface enhanced Raman spectroscopy on controlled metal/polymer nanostructured substrates, Biointerphases, 4, 35, 2009.
72.D. Cam, K. Keseroglu, M. Kahraman, F. Sahin, and M. Culha, Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering, Journal of Raman Spectroscopy, 41, 484, 2010.
73.Y. W. C. Cao, R. Jin, and C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science, 297, 1536, 2002.
74.N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics, Chemical Reviews, 105, 1547, 2005.
75.S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. -P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Applied Physics Letters, 87, 031908, 2005.
76.S. Shanmukh, L. Jones, Y. -P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques, Analytical and Bioanalytical Chemistry, 390, 1551, 2008.
77.R. A. Tripp, R. A. Dluhy, and Y. -P. Zhao, Novel nanostructures for SERS biosensing, Nano Today, 3, 31.
78.V. Hoang, R. A. Tripp, P. Rota, and R. A. Dluhy, Identification of individual genotypes of measles virus using surface enhanced Raman spectroscopy, Analyst, 135, 3103, 2010.
79.S. Shanmukh, L. Jones, J. Driskell, Y. -P. Zhao, R. A. Dluhy, and R. A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Letters, 6, 2630, 2006.
80.J. D. Driskell, Y. Zhu, C. D. Kirkwood, Y. -P. Zhao, R. A. Dluhy, and R. A. Tripp, Rapid and sensitive detection of rotavirus molecular signatures using surface enhanced Raman spectroscopy, Plos One, 5, e10222, 2010.
81.E. A. Govorkova, H. -B. Fang, M. Tan, and R. G. Webster, Neuraminidase inhibitor-rimantadine combinations exert additive and synergistic anti-influenza virus effects in MDCK cells, Antimicrobial Agents and Chemotherapy, 48, 4855, 2004.
82.S. J. Lee, Z. Guan, H. Xu, and M. Moskovits, Surface-enhanced Raman spectroscopy and nanogeometry:  the plasmonic origin of SERS, The Journal of Physical Chemistry C, 111, 17985, 2007.
83.K. L. Wustholz, C. L. Brosseau, F. Casadio, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas, Physical Chemistry Chemical Physics, 11, 7350, 2009.
84.Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays, Nano Letters, 8, 1923, 2008.
85.Y. -Y. Lin, J. -D. Liao, Y. -H. Ju, C. -W. Chang, and A. -L. Shiau, Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus, Nanotechnology, 22, 185308, 2011.
86.H. Xu, and M. Käll, Estimating SERS properties of silver-particle aggregates through generalized Mie theory, in Surface-Enhanced Raman Scateering : Physics and Applications, K. Katrin, M. Martin and K. Harald, Springer: New York, p: 92, 2006.
87.A. Lafuma, and D. Quéré, Superhydrophobic states, Nature Materials, 2, 457, 2003.
88.C. Ishino, and K. Okumura, Wetting transitions on textured hydrophilic surfaces, The European Physical Journal E, 25, 415, 2008.
89.J. Bico, U. Thiele, and D. Quéré, Wetting of textured surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 41, 2002.
90.A. M. Michaels, M. Nirmal, and L. E. Brus, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals, Journal of the American Chemical Society, 121, 9932, 1999.
91.Z. -Y. Zhang, Y. -J. Liu, Q. Zhao, and Y. -P. Zhao, The effect of layer absorbance for complex surface enhanced Raman scattering substrates, Applied Physics Letters, 94, 143107, 2009.
92.G. C. Schatz, Theoretical studies of surface enhanced Raman scattering, Accounts of Chemical Research, 17, 370, 1984.
93.V. Guieu, D. Talaga, L. Servant, N. Sojic, and F. Lagugné-Labarthet, Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array, The Journal of Physical Chemistry C, 113, 874, 2009.
94.Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons, Nano Letters, 9, 2049, 2009.
95.E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, Advanced aspects of electromagnetic SERS enhancement factors at a hot spot, Journal of Raman Spectroscopy, 39, 1127, 2008.
96.S. Schietinger, M. Barth, T. Alchele, and O. Benson, Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature, Nano Letters, 9, 1694, 2009.
97.W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering, The Journal of Physical Chemistry C, 113, 14651, 2009.
98.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, The Journal of Physical Chemistry B, 107, 668, 2002.
99.C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Letters, 5, 1569, 2005.
100.Z. -Y. Zhang, and Y. -P. Zhao, Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes, Journal of Applied Physics, 102, 113308, 2007.
101.A. Dhawan, M. Gerhold, and T. Vo-Dinh, Theoretical simulation and focused ion beam fabrication of gold nanostructures for surface-enhanced Raman scattering (SERS), NanoBioTechnology, 3, 164, 2007.
102.N. A. Myslitskaya, A. M. Ivanov, I. G. Samusev, and V. V. Bryukhanov, Deactivation of rhodamine 6G triplet-excited molecules and diffusion of nanoparticles in water–alcohol solutions, Journal of Applied Spectroscopy, 76, 777, 2009.
103.Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, Localized Raman enhancement from a double-hole nanostructure in a metal film, The Journal of Physical Chemistry C, 112, 15098, 2008.
104.Y. -Y. Lin, J. -D. Liao, M. -L. Yang, and C. -L. Wu, Target-size embracing dimension for sensitive detection of viruses with various sizes and influenza virus strains, Biosensors and Bioelectronics, 35, 447, 2012.
105.D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx - Preliminary findings, Lasers in Surgery and Medicine, 32, 210, 2003.
106.Z. Movasaghi, S. Rehman, and I. U. Rehman, Raman spectroscopy of biological tissues, Applied Spectroscopy Reviews, 42, 493, 2007.
107.S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, Ieee Senior Member, M. Gniadecka, and H. C. Wulf, Detection of skin cancer by classification of Raman spectra, Ieee Transactions on Biomedical Engineering, 51, 1784, 2004.
108.K. Kneipp, Surface-enhanced Raman scattering, Physics Today, 60, 40, 2007.
109.C. -L. Wu, G. -S. Shieh, C. -C. Chang, Y. -T. Yo, C. -H. Su, M. -Ya Chang, Y. -H. Huang, P. Wu, and A. -L. Shiau, Tumor-selective replication of an oncolytic adenovirus carrying Oct-3/4 response elements in murine metastatic bladder cancer models, Clinical Cancer Research, 14, 1228, 2008.
110.R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, and C. M. Krishna, Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study, Biopolymers, 81, 179, 2006.
111.A. Dhawan, M. Gerhold, and V. -D. Tuan, Theoretical simulation and focused ion beam fabrication of gold nanostructures for surface-enhanced Raman scattering (SERS), Nanobiotechnology, 3, 164, 2007.
112.F. Wei, D. Zhang, N. J. Halas, and J. D. Hartgerink, Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides, The Journal of Physical Chemistry B, 112, 9158, 2008.
113.S. A. Maier, and H. A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures, Journal of Applied Physics, 98, 011101, 2005.
114.G. W. Chen, S. C. Chang, C. K. Mok, Y. L. Lo, Y. N. Kung, J. H. Huang, Y. H. Shih, J. Y. Wang, C. Chiang, C. J. Chen, and S. R. Shih, Genomic signatures of human versus avian influenza A viruses, Emerging Infectious Diseases, 12, 1353, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top