跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林世偉
研究生(外文):Shih-WeiLin
論文名稱:有機染料敏化高分子太陽能電池性質之研究
論文名稱(外文):Study on Organic Dyes Sensitized Polymer Solar Cells
指導教授:許聯崇
指導教授(外文):Lien-Chung Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:物理摻雜有機染料高分子太陽能電池
外文關鍵詞:physically dopedorganic dyepolymer solar cell
相關次數:
  • 被引用被引用:2
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是利用物理摻雜的方式將有機染料摻入有機高分
子太陽能電池主動層材料,期望能藉由有機染料對太陽光吸收光性質與
高分子主動層材料產生互補性以及電荷轉移的效應幫助提升光電流而達到提升太陽能光電元件效率提升之效果。實驗以挑選合適欲添加之有機染料為主,實驗第一部分針對本研究所選三種有機染料做紫外光-可見光(UV -vis)光譜吸收分析、循環伏安量測分析(CV)、熱重分析儀(TGA)、溶解度測試等幾種性質鑑定及分析,選出合適的染料。第二部分以不同濃度(1.63wt%、3.22 wt%、4.76 wt%、6.3 wt%)的有機染料與P3HT 與PCBM 混合製作有機高分子太陽能元件,並以太陽光模擬器量測得到效率增加10 ~ 20 %,最後根據外部量子效率量測儀量測結果,證實高分子太陽能電池效率的提升是來自於光電流的增加。
In this study we enhanced the power conversion efficiency of polymer solar cell by physically doping organic dyes into the active layer of polymer solar cells. We expected the incorporation of organic dyes could have complementary absorption wavelength against the polymer active layer and
energy transfer effect in order to increase the current of polymer solar cell.
The first part of the experiment was to chose three different organic dyes and analyzed their characteristics with cyclic voltammetry (CV) 、UV-vis spectrometry、Thermogravimetry analysis(TGA) and solubility test. The
second part was to fabricate polymer solar cell by blending of adequate organic dyes into the active layer (P3HT:PCBM) with different concentration (1.63 wt%、3.22 wt%、4.76 wt%、6.3 wt%). The doped devices showed 10 ~ 20 % increase in efficiency. It was proved that the increasing
efficiency was due to the increase of photovoltaic current based on the measurement of external quantum efficiency (EQE).
摘要 I
AbstractII
誌謝III
總目錄IV
圖目錄 IX
第一章 緒論1
1-1 前言1
1-1-1 再生能源之介紹1
1-1-2 太陽能電池種類及發展介紹2
1-1-3 有機太陽能電池的優勢5
1-2 研究動機與目的7
第二章 理論基礎與文獻回顧10
2-1 共軛高分子導電特性理論10
2-2 有機高分子太陽能電池之工作原理13
2-3 有機與無機太陽能電池相異處16
2-3-1 能帶理論16
2-3-2 不同型態的激子19
2-4 有機高分子太陽能電池之特性分析21
2-4-1 開路電壓(Open circuit voltage ,Voc)22
2-4-2 短路電流(Short circuit current ,Jsc) 22
2-4-3 填充因子(Fill factor ,FF)23
2-4-4 光電轉換效率(Power conversion efficiency , ηc)24
2-5 元件結構25
2-5-1 單層結構(Single Layer Structure)25
2-5-2 雙層接面結構(Bilayer Structure) 28
2-5-3 單層異質接面結構(Bulk Heterojunction Structure)29
2-5-4 單層有序異質接面結構(Ordered Bulk Heterojunction
Structure)31
2-6 有機添加物添加至有機高分子太陽能電池中之應用33
第三章 實驗製備及分析儀器37
3-1 實驗藥品及儀器37
3-1-1 藥品37
3-1-2 實驗及分析量測儀器38
3-2 適當的染料選擇條件39
3-3 材料鑑定與分析原理43
3-4 高分子太陽能電池(Polymer solar cell)元件製備與量測49
第四章 結果與討論54
4-1 染料的選擇與性質鑑定54
4-1-1 Nile red 性質鑑定與分析54
4-1-2 Silicon2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine dihydroxide (SiPc) 性質鑑定與分析59
4-1-3 2,3,9,10,16,17,23,24-Octakis(octyloxy)-29H,31H-phthalo
cyanine (OPc) 性質鑑定與分析65
4-2 添加染料分子在主動層分布情形72
4-3 有機高分子太陽能元件性質分析74
4-3-1 紫外-可見光(UV-Vis)吸收光譜分析75
4-3-2 螢光光光譜分析78
4-3-3 X 光繞射(XRD)分析79
4-3-4 光學顯微鏡(OM)分析80
4-3-5 摻雜不同濃度之OPc 於P3HT / PCBM 主動層82
4-3-6 不同主動層熱處理溫度87
4-4 外部量子效率(External quantum efficiency)量測91
4-5 染料分子聚集(aggregation)定性分析93
第五章 結論96
參考文獻98
[1] A. A. Bartlett, Sustained Availability: A Management Program forNon-Renewable Resources, American Journal of Physics, vol. 54, p.398, 1986.
[2] P. B. Weisz, Basic Choices and Constraints on Long-Term EnergySupplies, Physics Today, p. 47, 2004.
[3] 張正華, 李陵嵐, 葉楚平, 楊平華, 有機與塑膠太陽能電池: 五南
出版社, 2008 年.
[4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys, vol. 25, p. 676, 1954.
[5] B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol. 353, p. 737,1991.
[6] M. Grätzel, Photoelectrochemical cells, Nature, vol. 414, p. 338,2001.
[7] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi,P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc., vol. 127 p. 16835, 2005.
[8] S. Gunes, H. Neugebauer, and N. S. Sariciftci, Conjugated
Polymer-Based Organic Solar Cells, Chem. Rev., vol. 107, p. 1324,2007.
[9] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, Organic-basedphotovoltaics toward low-cost power generation, MRS Bull., vol. 30,p. 10, 2005.
[10] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen, and N. S.Sariciftci, Realization of Large Area Flexible Fullerene - ConjugatedPolymer Photocells: A Route to Plastic Solar Cells, Synth. Met., vol.102, p. 861, 1999.
[11] S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour,Fabrication of bulk heterojunction plastic solar cells by screenprinting, Applied Physics Letters, vol. 79, p. 2996, 2001.
[12] J. Bharathan and Y. Yang, Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-mitting logo, Appl.Phys. Lett., vol. 72, p. 2660, 1998.
[13] N. Blouin, A. Michaud, and M. Leclerc, A Low-Bandgap
Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells, Advanced Materials, vol. 19, p. 2295, 2007.
[14] T. T. Larsen-Olsen, T. R. Andersen, B. Andreasen, A. P. L. Böttiger, E.Bundgaard, K. Norrman, J. W. Andreasen, M. Jørgensen, and F. C.Krebs, Roll-to-roll processed polymer tandem solar cells partially processed from water, Solar Energy Materials and Solar Cells, vol.97, p. 43, 2012.
[15] P. Boland, K. Lee, J. Dean, and G. Namkoong, Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites, Solar Energy Materials and Solar Cells, vol. 94, p. 2170,2010.
[16] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu,For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Advanced Materials, vol. 22,p. E135, 2010.
[17] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger,and G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Materials, vol.6, p. 497, 2007.
[18] H.Hoppe and N.S.Sariciftci, Polymer Solar Cells, Adv. Polym. Sci.,vol. 214, p. 1, 2008.
[19] W. Cai, X. Gong, and Y. Cao, Polymer solar cells: Recent
development and possible routes for improvement in the
performance, Solar Energy Materials and Solar Cells, vol. 94, p. 114,2010.
[20] G. Y. Chen, C. M. Chiang, D. Kekuda, S. C. Lan, C. W. Chu, and K. H.Wei, Synthesis and characterization of a narrow-bandgap polymer containing alternating cyclo-pentadithiophene and diketo-pyrrolo-pyrrole units for solar cell applications, Journal of Polymer Science Part A: Polymer Chemistry, vol. 48, p. 1669, 2010.
[21] E. Zhou, S. Yamakawa, K. Tajima, C. Yang, and K. Hashimoto,Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based Donor-Acceptor Copolymers, Chem. Mater., vol. 21, p. 4055, 2009.
[22] J. U. Lee, Y. D. Kim, J. W. Jo, J. P. Kim, and W. H. Jo, Efficiency enhancement of P3HT/PCBM bulk heterojunction solar cells by attaching zinc phthalocyanine to the chain-end of P3HT, Journal of Materials Chemistry, vol. 21, p. 17209, 2011.
[23] S. Honda, H. Ohkita, H. Benten, and S. Ito, Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells,Chemical Communications, vol. 46, p. 6596, 2010.
[24] A. Ltaief, R. Benchaabane, A. Bouazizi, and J. Davenas,
Photovoltaic properties of bulk heterojunction solar cells with improved spectral coverage, Materials Science and Engineering: C,vol. 26, p. 344, 2006.
[25] S. Kazim, M. Zulfequar, M. Mazharul Haq, P. K. Bhatnagar, and M.Husain, Electrical and optical properties of thin films based on poly[2-methoxy-5 (2′-ethyl hexyloxy)-1,4-phenylene vinylene] doped with
acridine orange dye with possible photovoltaic applications, SolarEnergy Materials and Solar Cells, vol. 91, p. 1462, 2007.
[26] J. Peet, A. B. Tamayo, X. D. Dang, J. H. Seo, and T. Q. Nguyen,Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells, Applied Physics Letters, vol. 93, p.163306, 2008.
[27] Y. A. M. Ismail, T. Soga, and T. Jimbo, Improvement in lightharvesting and performance of P3HT:PCBM solar cell by using 9,10-diphenylanthracene, Solar Energy Materials and Solar Cells, vol.93, p. 1582, 2009.
[28] Y. A. M. Ismail, T. Soga, and T. Jimbo, The contribution of coumarin 6 in light harvesting and photocurrent of P3HT:PCBM bulk heterojunction solar cell, Solar Energy Materials and Solar Cells, vol.94, p. 1406, 2010.
[29] M. Koppe, H.-J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec, P.Schilinsky, and C. N. Hoth, Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the SpectralResponse of Organic Solar Cells, Advanced Functional Materials, vol.20, p. 338, 2010.
[30] M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, and Y. Tai,
Improving the efficiency of organic solar cell with a novel ambipolar polymer to form ternary cascade structure, Solar Energy Materials and Solar Cells, vol. 95, pp. 2621-2627, 2011.
[31] R. L. Greene, G. B. Street, and L. J. Suter, Superconductivity in Polysulfur Nitride (SN)X, Phys. Rev. Lett., p. 577, 1975.
[32] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer Photovoltaic Cells : Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, vol. 270, p. 1789, 1995.
[33] A. J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture),Angew.Chem.Int.Ed., vol. 40, p. 2591, 2001.
[34] A. G. MacDiarmid, Synthetic Metals : A Novel Role for Organic Polymers (Nobel Lecture), Angew.Chem.Int.Ed., vol. 40, p. 2581,2001.
[35] J. H. Schön, A. Dodabalapur, Z. Bao, C. Kloc, O. Schenker, and B.Batlogg, Gate-induced superconductivity in a solution-processed organic polymer film, Nature, vol. 410, p. 189, 2001.
[36] H. Shirakawa, The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture), Angew. Chem.Int. Ed., vol. 40, p. 2574, 2001.
[37] N. D. Sankır, FLEXIBLE ELECTRONICS: MATERIALS and
DEVICE FABRICATION, 2005.
[38] J. J. Dittmer, E. A. Marseglia, and R. H. Friend, Electron Trapping in Dye/Polymer Blend Photovoltaic Cells, Adv.Mater., vol. 17, p. 1270,2000.
[39] P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,Appl.Phys.Lett., vol. 79, p. 126, 2001.
[40] H. Hoppe and N. S. Sariciftci, Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results, J. Mater. Res., vol. 19, p. 1924, 2004.
[41] J. Y. Kim and A. J. Bard, Organic Donor/Acceptor Heterojunction Photovoltaic Devices based on Zinc Phthalocyanine and a Liquid Crystalline Perylene Diimide, Chem. Phys. Lett., vol. 383, p. 11,2004.
[42] M. G. Helander, Z. B. Wang, J. Qiu, and Z. H. Lu, Band alignment at metal/organic and metal/oxide/organic interfaces, Appl. Phys. Lett.,vol. 93, p. 19, 2008.
[43] K. P. Nayak and N. Periasamy, Calculation of electron affinity,ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using‘solvation’ model and DFT,Org. Electron., vol. 10, p. 1396, 2009.
[44] C. Kittel, Introduction to Solid State Physics. New York: John Wiley& Sons, 1996.
[45] K. Nakaya, K. Funabiki, H. Muramatsu, K. Shibata, and M. Matsui,N-Aryl-1,8-naphthalimides as highly sensitive fluorescent labelingreagents for carnitine, Dyes and Pigments, vol. 43, p. 235, 1999.
[46] K. Sakayori, Y. Shibasaki, and M. Ueda, Synthesis of a novel high sensitive photo-radical initiator with good thermal stability based on naphthalic-1,8-N-alkylimide derivatives, Polym. Sci. Part A, vol. 43,p. 5571, 2005.
[47] B. A. Gregg, The photoconversion mechanism of excitonic solar cells, MRS Bull., vol. 30, p. 20, 2005.
[48] 林宇君,新型低能隙聚芴系共聚物之合成及其在太陽能電池之應用,國立成功大學材料科學及工程學系,碩士論文, 2009 年.
[49] 黃詩吟,摻雜銀奈米粒子於有機高分子太陽能電池之研究,國立成功大學材料科學及工程學系,碩士論文, 2010 年.
[50] A. K. Ghosh and T. Feng, Merocyanine organic solar cells, J. Appl,Phys, vol. 49, p. 5982, 1978.
[51] 陳建華, p 型透明導電膜應用於有機發光二極體,國立成功大學化學工程研究所,碩士論文, 2003 年.
[52] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett.,vol. 48, p. 183, 1986.
[53] G. Yu, K. Pakbaz, and A. J. Heeger, Semiconducting polymer diodes:Large size, low cost photodetectors with excellent visible‐ultravioletsensitivity, Appl. Phys. Lett., vol. 64, p. 3422, 1994.
[54] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L.Wilkins, Preparation and Characterization of Fulleroid and Methanofullerene Derivatives, J. Org. Chem., vol. 60, p. 532, 1995
[55] R. A. J. Janssen, J. C. Hummelen, and N. S. Saricftci,
Polymer-fullerene bulk heterojunction solar cells, MRS Bull., vol.30, p. 33, 2005.
[56] J. S. Kim, Y. Park, D. Y. Lee, J. H. Lee, J. H. Park, J. K. Kim, and K.Cho, Poly(3-hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics, Adv. Funct. Mater., vol. 20, p.540, 2010.
[57] N. Haberkorn, S. Kim, K.-S. Kim, M. Sommer, M. Thelakkat, B.-H.Sohn, and P. Theato, Template-Assisted Fabrication of Highly Ordered Interpenetrating Polymeric Donor/Acceptor Nanostructures for Photovoltaic Applications, Macromolecular Chemistry and
Physics, vol. 212, p. 2142, 2011.
[58] S. S. Sharma, G. D. Sharma, and J. A. Mikroyannidis, Improved power conversion efficiency of bulk heterojunction poly(3-hexylthiophene):PCBM photovoltaic devices using small molecule additive, Solar Energy Materials and Solar Cells, vol. 95, p.1219, 2011.
[59] J.-H. Huang, M. Velusamy, K.-C. Ho, J.-T. Lin, and C.-W. Chu, A ternary cascade structure enhances the efficiency of polymer solar cells, Journal of Materials Chemistry, vol. 20, p. 2820, 2010.
[60] S. Honda, T. Nogami, H. Ohkita, H. Benten, and S. Ito, Improvement of the Light-Harvesting Efficiency in Polymer/Fullerene Bulk Heterojunction Solar Cells by Interfacial Dye Modification, ACS Applied Materials & Interfaces, vol. 1, p. 804, 2009.
[61] S.-J. Moon, E. Baranoff, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau,M. Grätzel, and K. Sivula, Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye, Chemical Communications, vol. 47, p. 8244, 2011.
[62] S. Honda, H. Ohkita, H. Benten, and S. Ito, Selective Dye Loading at the Heterojunction in Polymer/Fullerene Solar Cells, Advanced Energy Materials, vol. 1, p. 588, 2011.
[63] http://www.wmo.int/pages/index_en.html.
[64] a. S. L. S. J. F. Rusling, Characterizing Materials with Cyclic Voltammetry, Adv. Mater., vol. 6, p. 922, 1994.
[65] M. S. L. Y. Liu, and A. K. Y. Jen, Synthesis and characterization of a novel and highly efficient light-emitting polymer, Acta. Polym., vol. 50, p. 105, 1999
[66] G. He, S.-C. Chang, F.-C. Chen, Y. Li, and Y. Yang, Highly efficient polymer light-emitting devices using a phosphorescent sensitizer,Applied Physics Letters, vol. 81, p. 1509, 2002.
[67] Z. Y. Xie, L. S. Hung, and S. T. Lee, High-efficiency red
electroluminescence from a narrow recombination zone confined by an organic double heterostructure, Applied Physics Letters, vol. 79, p.1048, 2001.
[68] M. G. Walter, A. B. Rudine, and C. C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells, Journal of Porphyrins and Phthalocyanines, vol. 14, p. 759, 2010.
[69] Z.-X. Xu, V. A. L. Roy, K.-H. Low, and C.-M. Che, Bulk
heterojunction photovoltaic cells based on tetra-methyl substituted copper(ii) phthalocyanine : P3HT : PCBM composite, Chemical Communications, vol. 47, p. 9654, 2011.
[70] S. Jeong, S.-H. Woo, H.-K. Lyu, and Y. S. Han, Effects of a
perfluorinated compound as an additive on the power conversion efficiencies of polymer solar cells, Solar Energy Materials and Solar Cells, vol. 95, p. 1908, 2011.
[71] W. R. H. Barger, E.; Ferraudi, G.; Leznoff, C. C.; Nyokong, T.; and I.S. Rosenthal, A. W.; Stillman, M. J.; Wo¨ hrle, D. In,
Phthalocyanines,Properties and Applications vol. 1: VCH Publishers,Inc.: New York, 1989.
[72] Y. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D.
McGehee, Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,Advanced Materials, vol. 17, pp. 2960-2964, 2005.
[73] Z. Chen, L. Niu, Y. Cheng, X. Zhou, C. Zhong, and F. Zhang,Octathienyl/phenyl-substituted zinc phthalocyanines J-aggregated
through conformational planarization, Dalton Transactions, vol. 40, p.393, 2011.
[74] D. D. Dominguez, A. W. Snow, J. S. Shirk, and R. G. S. Pong,Polyethyleneoxide-capped phthalocyanines: limiting phthalocyanine aggregation to dimer formation, Journal of Porphyrins and Phthalocyanines, vol. 5, p. 582, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊