跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑞杰
研究生(外文):Jui-JieChen
論文名稱:應力電子顯微鏡系統之研發
論文名稱(外文):System Development of Stress Image Microscopy (SIM)
指導教授:郭瑞昭
指導教授(外文):Jui-Chao Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:背向散射電子繞射應力電子顯微鏡直通矽晶穿孔殘留應力量測
外文關鍵詞:EBSDStress image microscopyResidual stress measurement of TSV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
隨著高科技發展,避免造成材料的破壞與損毀,精確量測殘留應力大小成為關鍵,因此,殘留應力的量測在工業中對於材料應用相當重要。為了量測微觀組織下的微殘留應力,必須考慮量測的解析度及量測應力的大小,以傳統X-ray繞射峰值位移及鑽孔法的破壞性量測殘留應力等方式,都無法達到量測微應力的標準。本實驗採用的背向式散射繞射電子量測殘留應力方法,可獲得高解析度的準確結果。
本研究為國內首次自行建構應力電子顯微鏡系統之研發,分為硬體與軟體兩部分,首先為自行研發建構的硬體 EBSD系統,其中包括磷光幕偵測器、超高感度光學鏡頭(光圈值f 0.95)及電荷耦合攝影機,結合軟體HKL系統進行成果測試,實驗結果顯示縮短磷光幕與試片間距離由55mm到40mm可降低角解析偏差度(Mean Angular Deviation)從0.85∘降低到0.52∘,進而提高量測的精準度。
第二部分為微應力量測軟體程式計算部分,首先以TSL系統探討不同掃描點距對於應力量測的像素位移量之影響,實驗顯示在固定工作距離(Working Distance)下,因電子束移動造成應力解析上的像素變化量大小從100倍時0.02458(pixel/μm)到2000倍的0.02336(pixel/μm),可得知電子束移動大小對菊池線圖中晶軸位移影響並不明顯。修正後的應力計算程式利用封裝矽晶圓的直通矽晶穿孔(Through-Silicon Via)基板,進行殘留應力量測實驗,實驗數據與模擬值相符,建構後的應力電子顯微鏡系統在量測應力時的晶軸位移解析度,可達到2.97x10-3(radian/pixel),應變解析度提升至10-5而應力準確值達0.1M Pa。

Residual stresses arising by non-uniform cooling, welding and mechanical processing are known to have influence on materials’ mechanical properties. Thus, it is of importance to measure accurately residual stresses especially in high-tech industry. However, conventional methods of residual stress measurement, such as using X-ray diffraction and drilling method, are limited by their spatial resolution. Therefore, in this study, residual stress was measured by electron backscattered diffraction (EBSD) technique due to its high spatial resolution.

In this study we developed a “Stress Image Microscope” which was based on EBSD technique. We built the first prototype of EBSD hardware at one hand and developed the program of stress measurement based on EBSD technique at the other hand for the first time in Taiwan. The home-made EBSD system includes a phosphorescent screen detector, optical lens and a CCD camera. In order to test the EBSD system, decrease in the distance between the phosphorescent screen and the specimen from 55 to 40 mm leads to improving the mean angular deviation from 0.850 to 0.520.

In the second part of this study the resolution of stress measurement with EBSD was investigated. At fixed working distance the electron beam movement resulted the pixel displacement of 0.02458 (pixel/μm) at 100 times magnification and 0.02336 (pixel/μm) of 2000 times magnification. Obviously, the beam movement effect didn’t have a large influence on the pixel displacement. In addition the residual stress measurement was applied for through silicon via structure in silicon. The home-made software of stress measurement has an axis displacement resolution of 2.97x10-3 (radian/pixel), stress resolution to 0.1MPa and the strain resolution to 10-5.



摘 要 I
Abstract III
致謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言1
第二章 文獻回顧及相關理論4
2.1 EBSD發展4
2.2 EBSD-量測殘留應力之文獻回顧及原理 14
2.2.1背向式散射電子繞射文獻回顧與原理 14
2.2.2 EBSD量測殘留應力18
第三章 實驗方法20
3.1 EBSD 硬體系統建構介紹20
3.1.1 前端訊號 Phosphor Detector20
3.1.2 中端光學鏡頭 28
3.1.3 後段訊號轉換CCD camera31
3.2 EBSD量測殘留應力34
3.2.1理論基礎34
3.2.2 應力量測軟體校正43
3.2.3 應力量測46
第四章 實驗結果51
4.1硬體系統建構後之解析度結果51
4.2分析軟體校正結果57
4.3菊池線及電子束位移量測與應變應力關係61
4.4 直通矽晶穿孔(Through-Silicon Via)基板之應力分析69
第五章 討論74
5.1磷光幕距離與加速電壓對角解析度之探討74
5.2電子束位移量測對應變應力的影響80
5.3 拋光方式對於量測殘留應力影響之探討84
第六章 結論87
參考文獻89

[1]Z. Q. Cao and X. Zhang, Experiments and theory of thermally-induced stress relaxation in amorphous dielectric films for MEMS and IC applications, Sensors and Actuators a-Physical, vol. 127, pp. 221-227, 2006.
[2]P. Angerer, E. Neubauer, L. G. Yu, and K. A. Khor, Determination of the residual stress depth profile of uniaxial compacted ruthenium powder samples by X-ray diffraction, International Journal of Refractory Metals & Hard Materials, vol. 27, pp. 1004-1008, 2009.
[3]Y. L. Kang, Y. Qiu, Z. K. Lei, and M. Hu, An application of Raman spectroscopy on the measurement of residual stress in porous silicon, Optics and Lasers in Engineering, vol. 43, pp. 847-855, 2005.
[4]A. J. Schwartz, M. Kumar, B. L. Adams and D.P. Field Electron Backscatter Diffraction in Material Science.,Second editon,Springer, 2000.New York.
[5]Y. B. Gerbig, S. J. Stranick, and R. F. Cook, Measurement of residual stress field anisotropy at indentations in silicon, Scripta Materialia, vol. 63, pp. 512-515, 2010.
[6]M. Bestmann, D. J. Prior, and B. Grasemann, Characterisation of deformation and flow mechanics around porphyroclasts in a calcite marble ultramylonite by means of EBSD analysis, Tectonophysics, vol. 413, pp. 185-200, 2006.
[7]F. Heidelbach, H. R. Wenk, S. R. Chen, J. Pospiech, and S. I. Wright, Orientation and misorientation characteristics of annealed, rolled and recrystallized copper, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 215, pp. 39-49,1996.
[8]S. Zaefferer, J. C. Kuo, Z. Zhao, M. Winning, and D. Raabe, On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals, Acta Materialia, vol. 51, pp. 4719-4735, 2003.
[9]V. Randle and G. Owen, Mechanisms of grain boundary engineering, Acta Materialia, vol. 54, pp. 1777-1783, 2006.
[10]G. H. Zhu, W. M. Mao, and Y. N. Yu, Nucleation of cold rolled FeCo alloy during annealing and its influence on the formation of recrystallization texture, Journal of Materials Science & Technology, vol. 16, pp. 543-545, 2000.
[11]P. Peralta and C. Laird, Compatibility stresses in fatigued bicrystals: Dependence on misorientation and small plastic deformations, Acta Materialia, vol. 45, pp. 512-514,1997.
[12]S. Nishikawa and S. Kikuchi, Diffraction of cathode rays by mica, Nature, vol. 121, pp. 1019-1020, 1928.
[13]S. Nishikawa and S. Kikuchi, Diffraction of cathode rays by calcite, Nature, vol. 122, pp. 726, 1928.
[14]K. Shinohara, Diffraction of cathod rays by single crystals., Scientific Papers of the Instute of Physical and Chemical Research, vol. 20, pp. 39-51, 1932.
[15]K. Shinohara, A Note on the Diffraction of Cathode Rays by Single Crystals, Physical Review, vol. 47, pp. 730-735, 1935.
[16]H. Boersch, About bands in electron diffraction, Physikalische Zeitschrift, vol. 38, pp. 1000-1004, 1937.
[17]M. N. Alam, M. Blackman, and D. W. Pashley, High-Angle Kikuchi Patterns, Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 221, pp. 224-242, 1954.
[18]J. A. Venables and C. J. Harland, Electron back-scattering patterns-A new technique for obtaining crystallographic information in the scanning electron microscope, Philosophical Magazine, vol. 27, pp. 1193-1200, 1972.
[19]D. Dingley, On-line determination of crystal orientation and texture determination in an SEM, Proceedings of the Royal Microscopy Society, vol. 19, pp. 74-75, 1984.
[20]N. C. Krieger Lassen, D. J. Jensen, and K. Conradsen, Image-Processing Procedures for Analysis of Electron Back Scattering Patterns, Scanning Microscopy, vol. 6, pp. 115-121, 1992.
[21]Orientation Image Microscopy Analysisv 5.2, Ametek, 2007,United States of America.
[22]R. A. Schwarzer, Automated crystal lattice orientation mapping using a computer-controlled SEM, Micron, vol. 28, pp. 249-265, 1997.
[23]A. J. Wilkinson, Measurement of elastic strains and small lattice rotations using electron back scatter diffraction, Ultramicroscopy, vol. 62, pp. 237-247, 1996.
[24]A. J. Wilkinson, G. Meaden, and D. J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity, Ultramicroscopy, vol. 106, pp. 307-313, 2006.
[25]A. G. T.M. Maitland, Advances in High-Speed EBSD Orientation Mapping, Microscopy and Microanalysis, vol. 13, pp. 924-925, 2007.
[26]R. A. W. Matthew M. Nowell, and Brian True, EBSD Sample Preparation: Techniques, Tips, and Tricks, Microscopy and Microanalysis, vol. 11, pp. 504-505, 2005.
[27]D. J. Prior, A. P. Boyle, F. Brenker, M. C. Cheadle, A. Day, G. Lopez, L. Peruzzo, G. J. Potts, S. Reddy, R. Spiess, N. E. Timms, P. Trimby, J. Wheeler, and L. Zetterstrom, The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, American Mineralogist, vol. 84, pp. 1741-1759, 1999.
[28]J. H. Driver, D. J. Jensen, and N. Hansen, Large-Strain Deformation Structures in Aluminum Crystals with Rolling Texture Orientations, Acta Metallurgica Et Materialia, vol. 42, pp. 3105-3114, 1994.
[29]W. Pantleon, W. He, T. P. Johansson, and C. Gundlach, Orientation inhomogeneities within individual grains in cold-rolled aluminium resolved by electron backscatter diffraction, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol.83, pp. 668-671, 2008.
[30]Krieger-Lassen and N.C. Automated Determination of Crystal Orientations from Electron Backscattering Patterns., Danmarks Tekniske Universitet Lyngby, 1994.
[31]A. J. Schwartz, M.Kumar, B. L.Adams and D.P. Field, Electron Backscatter Diffraction in Material Science.,Second edition, 2000,New York.
[32]D. J. Dingley, Progressive Steps in the Development of Electron Backscatter Diffraction and Orientation Imaging Microscopy, Journal of Microscopy, pp. 214-224, 2004.
[33]F. J. Humphreys, Phase Identification in a Scanning Electron Microscope Using Backscattered Electron Kikuchi Patterns., Journal of Research of the National Institute of Standards and Technology, vol. 101, pp. 301-308, 1996.
[34]J. A. Venables and C. J. Harland, Electron Backscattering Patterns - New Technique for Obtaining Crystallographic Information in Scanning Electron-Microscope, Philosophical Magazine, vol. 27, pp. 1193-1200, 1973.
[35]陳志慶,博士論文背向散射電子繞射技術的空間及角解析度之探討,國立成功大學,pp. 10, 2012.
[36]A. J. Wilkinson and D. J. Dingley, Quantitative Deformation Studies Using Electron Back Scatter Patterns, Acta Metallurgica Et Materialia, vol. 39, pp. 3047-3055, 1991.
[37]D. J. Dingley and V. Randle, Microtexture Determination by Electron Back-Scatter Diffraction, Journal of Materials Science, vol. 27, pp. 4545-4566, 1992.
[38]K. Z. Babakishi and D. J. Dingley, Application of Backscatter Kikuchi Diffraction in the Scanning Electron-Microscope to the Study of Nis2, Journal of Applied Crystallography, vol. 22, pp. 189-200, 1989.
[39]K. Z. Troost, P. Vandersluis, and D. J. Gravesteijn, Microscale Elastic-Strain Determination by Backscatter Kikuchi Diffraction in the Scanning Electron-Microscope, Applied Physics Letters, vol. 62, pp. 1110-1112, 1993.
[40]A. J. Wilkinson, Advances in SEM-based diffraction studies of defects and strains in semiconductors, Journal of Electron Microscopy, vol. 49, pp. 299-310, 2000.
[41]A. J. Wilkinson, G. Meaden, and D. J. Dingley Mapping strains at the nanoscale using electron back scatter diffraction, Superlattices and Microstructures, vol. 45, pp. 285-294, 2009.
[42]Princeton Instruments, Introduction to Image Intensifiers for Scientific Imaging, United States of America, 2007.
[43]Beam Imaging Solutions Incoporation, 2012.Japan. (http://www.beamimaging.com/pscreen.html)
[44]S. X. Ren, E. A. Kenik, K. B. Alexander, and A. Goyal, Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation, Microscopy and Microanalysis, vol. 4, pp. 15-22, 1998.
[45]Hamamatsu, Image Processing and Analysis System for Optical Microscopes, Argus-20,Japan. ( http://www.sales.hamamatsu.com)
[46]E. G. Sommerstrasse, Digital Imaging Technology Imaging Source, Bremen,Germany. ( http://www.theimagingsource.com)
[47]G. T. Mase and G.E. Mase, Continuum Mechanics for Engineers,CRC, 1999.Uniited States of America.
[48]王翰弘,碩士論文以電子繞射量測殘留應變與其應用,國立成功大學,pp.22,2007.
[49]F. Grytten, H. Daiyan, M. Polanco-Loria, and S. Dumoulin, Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics, Polymer Testing, vol. 28, pp. 653-660, 2009.
[50]S. H. Tung, M. H. Shih, and J. C. Kuo, Application of digital image correlation for anisotropic plastic deformation during tension testing, Optics and Lasers in Engineering, vol. 48, pp. 636-641, 2010.
[51]W. H. Peters, W. F. Ranson, M. A. Sutton, T. C. Chu, and J. Anderson, Application of Digital Correlation Methods to Rigid Body Mechanics, Optical Engineering, vol. 22, pp. 738-742, 1983.
[52]S.H. Yu, The New Century of Taiwan Semiconductor – 3D IC, System of Circuit Technical Journal pp. 3-8,2009.
[53]M. Motoyoshi, Through-Silicon Via (TSV), Proceedings of the Ieee, vol. 97, pp. 43-48, 2009. Los Angeles, USA
[54]A. P. Day and P. W. Trimby, Channel 5 User Manual, HKL Technology A/S,, Hobro, Denmark (2001).
[55]N. C. K. Lassen, The relative precision of crystal orientations measured from electron backscattering patterns, Journal of Microscopy-Oxford, vol. 181, pp. 72-81, 1996.
[56]I. Brough, P. S. Bate, and F. J. Humphreys, Optimising the angular resolution of EBSD, Materials Science and Technology, vol. 22, pp. 1279-1286, 2006.
[57]T. C. Isabell and V. P. Dravid, Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM, Ultramicroscopy, vol. 67, pp. 59-68, 1997.
[58]W. S. Kwon, D. T. Alastair, K. H. Teo, S. Gao, T. Ueda, T. Ishigaki, K. T. Kang, and W. S. Yoo, Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy, Applied Physics Letters, vol. 98, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top