跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾世凱
研究生(外文):Shi-KaiTzeng
論文名稱:氧化鋅一維結構成長、元件組裝及紫外光偵測器製作之研究
論文名稱(外文):Growth, Assembly, Ultraviolet Photodetector Fabrication of One-dimensional ZnO
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:水熱法水溶液法氧化鋅紫外光檢測器表面改質奈米結構
外文關鍵詞:hydrothermalaqueous-solution processzinc oxideultraviolet photodetectorsurface modificationnanostructure
相關次數:
  • 被引用被引用:6
  • 點閱點閱:494
  • 評分評分:
  • 下載下載:162
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要目標是以低溫的溼式化學法製程,製作出高效能的紫外光偵測器。從材料合成、組裝與元件的製作及測量,製程的最高溫度小於200oC。採用的方法是先利用水熱法合成單晶的氧化鋅奈米線,並藉由調控界面活性劑以改變氧化鋅奈米結構的尺寸。之後利用介電泳動的製程將單晶氧化鋅奈米線在電場的輔助下組裝成紫外光偵測器。接著,表面改質氧化鋅奈米線以提高光偵測器對光的靈敏度與響應時間。最後為了簡化製程與縮短時間,直接將成長氧化鋅的晶種以電化學沉積於電極上,隨後於溶液中成長氧化鋅時,使之自組裝成光偵測器。
為搭配後端的光偵測器應用,氧化鋅奈米線的尺寸需要在合成的過程中獲得良好的控制,在此使用聚乙烯醇作為奈米線成長的導向劑,並藉由調控聚乙烯醇的添加量以達到控制奈米線的目的。在室溫時,聚乙烯醇的氫氧基能與溶液中二價鋅離子配位,在反應溫度為150 oC的鹼性溶液中,聚乙烯醇的氫氧基斷鍵導致鋅離子能在反應過程中持續的被釋放。此過程中聚乙烯醇相當於儲存鋅離子的裝置,在反應前因為鋅離子的含量較少所以有較少的成核點,隨著延長持溫時間,鋅離子能緩慢的被釋放以提供氧化鋅成長所使用。當聚乙烯醇的添加量由0增加至0.92 wt%時,氧化鋅奈米線的平均長度由1.3 m增加至126 m。在本研究中藉由介電泳動排列氧化鋅奈米線並跨接於電極之間,用以製作成光導體式的紫外光偵測器,並藉著聚甲基丙烯酸甲酯作為鈍化層被覆於氧化鋅表面,進而達到降低暗電流的效果。同時,為了增加光偵測器對光的靈敏度,藉由溶劑輔助式壓印製程在光偵測器上製作具微透鏡陣列的結構的聚甲基丙烯酸甲酯,用以增加入射光的穿透度與降低反射率,進而加強了光偵測器的訊雜比。為降低響應時間,在本研究中將銀奈米顆粒光還原沉積於氧化鋅表面,並發現銀/氧化鋅的界面存在著非劑量比的氧化銀,推測這非計量比的氧化銀導致銀奈米顆粒與氧化鋅表面產生蕭基式接觸,為改善元件性能的重要關鍵。接著,直接利用濕式化學法合成氧化銀奈米顆粒,並使之附著於氧化鋅表面,更降低光偵測器的響應時間,氧化銀奈米顆粒作為p型半導體將附著於n型的氧化鋅上,使其間產生p-n接面。在光偵測器未照光時,此p-n接面可增加氧化鋅表面之空乏層厚度,降低暗電流。偵測器在照射與關閉光的情況下,可藉內建電場的輔助同時增加光靈敏度與加速光響應速度。將氧化鋅表面沉積氧化銀後可獲得大於105的訊雜比,響應時間小於1 sec的高效能紫外光偵測器。
為了簡化製作光偵測器的製程與縮短元件製作時間,利用電鍍鋅於電極上作為晶種,再藉由水溶液法合成氧化鋅,在電極間相向成長的氧化鋅奈米線晶體會同時自組裝成光偵測器的結構。經由光致發光光譜儀與X光電子能譜儀分析得知,水溶液法合成的氧化鋅表面佔約44.6%的 導致其響應時間極長,達7×104 sec以上。為改善此複雜的奈米結構的表面特性,則利用在純水中進行水熱反應的方式將表面鈍化,並有效的降低響應時間致220 sec。

Fabrication of high-performance ZnO nanowire-based photodetectors through low temperature processes is the main purpose of this dissertation. For this purpose, a wet chemical process was employed as the main technique for synthesizing ZnO nanowires. Besides, the morphology and size of ZnO nanowires were tuned by the addition of PVA with varied amount. PVA acts as a structure-directing agent for growing the ultra-long ZnO nanowires. Then, the ZnO UV photdetectors were fabricated by aligning ZnO nanowires between the interdigitated electrodes via a dielectrophoresis process. Based on decreasing the reflection of UV light on ZnO surface, the signal to noise ratio can be improved via capping PMMA micro-lens arrays. Then Ag nanoparticles were loaded onto the surface of ZnO nanowires by a photoreduction process, for the purpose of decreasing the response time. By investigating the Ag/ZnO interface, a non-stoichiometric AgOx phase is observed by HRTEM images and SAED patterns. Ag2O nanoparticles were also decorated onto the surface of ZnO nanowires. Photogenerated electrons and holes can be separated by the built-in potential induced by Ag2O/ZnO p-n junction. After decorating Ag2O nanoparticles onto ZnO surface, the maximum signal to noise ratio is larger than 105, accomplishing both a short rise time and a decay time of less than 1 s. After turning off UV irradiation, the current of Ag2O/ZnO heterostructured UV detector is recovered to the initial value within around 10~13s.
The aqueous solution processes were also used to self-assemble ZnO nanobridge photodetcors. By investigation with XPS and PL, singly ionized oxygen vacancies induce the persistence photoconductivity of ZnO-nanowire-based UV photdetectors. A hydrothermal process was used to passivate the surface states and singly ionized oxygen vacancies on the ZnO nanowires. The photoresponse time decreases significantly after extending the hydrothermal duration.

總目錄
摘要 I
Abstract III
致謝 V
總目錄 VI
圖目錄 VIII
表目錄 XII
中英名詞與符號對照表 XIII
第一章、緒論 1
1-1引言 1
1-2研究動機與目的 3
第二章、理論基礎 5
2-1半導體光偵測器原理 5
2-1-1 光的吸收 5
2-1-2 光偵測器元件結構 5
2-1-3 光偵測器特性參數 8
2-2 ZnO的性質 9
2-2-1 ZnO的晶體結構 9
2-2-2 ZnO的本質缺陷 11
2-3 ZnO一維奈米結構的合成技術 11
2-4 濕式化學法合成ZnO一維奈米結構 12
2-5 一維奈米結構元件組裝 13
2-6 ZnO紫外光偵測器 16
2-7 氧氣於ZnO表面的吸附與脫附 18
2-8 電化學沉積ZnO一維奈米結構之晶種 19
2-8-1 鋅晶種層 19
2-8-2 電化學沉積 20
第三章 實驗步驟與方法 23
3-1 實驗藥品 24
3-2 水熱法合成ZnO一維結構 25
3-2-1 水熱法設備 25
3-2-2 合成方法 25
3-2-3 鋅離子濃度量測 27
3-3 介電泳動製程組裝ZnO一維結構 27
3-3-1 實驗流程 27
3-4聚甲基丙烯酸甲酯微透鏡陣列(MLA)製作 28
3-5 光還原沉積Ag奈米顆粒於ZnO一維結構表面 30
3-6 Ag2O奈米顆粒合成 30
3-7 電化學沉積晶種鋅 31
3-7-1 電化學沉積設備 31
3-7-2 實驗流程 31
3-8 水溶液法製程自組裝ZnO一維結構光偵測器 33
3-8-1水溶液法製程 33
3-8-2 水熱法改質ZnO表面 33
3-9 材料分析與元件特性分析 34
3-9-1 X光繞射分析(XRD) 34
3-9-2 掃瞄式電子顯微鏡分析(SEM) 34
3-9-3 X光電子能譜儀(XPS) 34
3-9-4 穿透式電子顯微鏡(TEM) 35
3-9-5 傅利葉轉換紅外線光譜儀(FT-IR) 35
3-9-6 光致發光光譜儀(PL) 35
3-9-7 光偵測器特性分析 35
第四章 實驗結果與討論 37
4-1 水熱法合成ZnO一維結構 37
4-1-1 水熱法合成ZnO之晶體結構 37
4-1-2 鋅離子濃度對ZnO一維結構成長的影響 39
4-1-3 聚乙烯醇添加對ZnO一維結構成長之影響 41
4-2 介電泳動製程組裝ZnO一維結構 47
4-3 ZnO一維結構紫外光偵測器特性 49
4-4 聚甲基丙烯酸甲酯(PMMA)微透鏡陣列改善ZnO紫外光偵測器特性 53
4-4-1 ZnO/聚甲基丙烯酸甲酯複合材料光學特性 54
4-4-2 聚甲基丙烯酸甲酯微透鏡陣列的光學特性 62
4-4-3 聚甲基丙烯酸甲酯微透鏡陣列對ZnO紫外光感測器特性的影響 65
4-5 Ag奈米顆粒改善ZnO紫外光偵測器特性 67
4-6 Ag2O奈米顆粒改質ZnO紫外光偵測器特性 77
4-6-1 Ag2O奈米顆粒合成 77
4-6-2 Ag2O/ZnO異質結構紫外光偵測器特性分析 81
4-7 電鍍Zn晶種參數對ZnO橋接式紫外光偵測器特性的影響 85
4-7-1 電鍍Zn晶種尺寸對ZnO型貌之影響 85
4-7-2 橋接式ZnO光偵測器特性 89
第五章 結論 102
第六章 參考文獻 104

圖目錄
Fig. 2- 1 Optical generated electron-hole pair formation in semiconductor, when (a) h =Eg, (b) h 〉Eg and (c) h 〈Eg[1,22]. 6
Fig. 2- 2 Schematic structure of different semiconductor photodetectors: (a)photoconductor, (b)Schottky photodiode, (c)p-n photodiode and (d) p-i-n photodiode[2]. 6
Fig. 2- 3 Stick and ball representation of ZnO crystal structure: (a) cubic rocksalt, (b) cubic zinc blende, and (c) hexagonal wurtzite. The shaded gray and black spheres denote Zn and O atoms, respectively[24]. 10
Fig. 2- 4 Energy levels of native defects in ZnO. The donor defects are Zni●●, Zni●, ZniX ,Vo●●,Vo●,VoX and the acceptor defects are Vzn' ,Vzn' [30]. 10
Fig. 2- 5 Bridge-type GaAs nanowhisker arrays grown on the side wall of a ditch formed on the substrate. (a) SEM image of the fabricated bridge-type nanowhisker arrays. (b) Schematic illustration of (a). Nanowhiskers grew on side wall in the 〈111〉 As direction , and their tops reached the other side[49]。 15
Fig. 2- 6 Schematic energy band diagrams of ZnO-nanowire surface illustrate the states (a) in dark and (b) under UV light illumination[51]. 17
Fig. 2- 7 Typical adsorption isobars: the solid lines are equilibrium physisorption and a chemisorption isobar, the dashed line represents irreversible chemisorption. A maximum coverage of chemisorbed molecules is obtained at a temperature Tmax. Below Tmax the chemisorption is irreversible because the rate of desorption becomes negligible[56]. 17
Fig. 3- 1 The flow chart of experiment for growth, assembly and fabrication of ZnO nanowires-based UV photodetectors via wet chemical processes. 23
Fig. 3- 2 Photograph of autoclaves used in the study. 26
Fig. 3- 3 (a) Schematic diagram of dielectrophoresis equipment. (b) ZnO nanowires aligned on interdigitated electrode by dielectrophoresis process. 29
Fig. 3- 4 (a) Shematic structure of ZnO photodetector with MLA-patterned capping PMMA layer. (b) SEM image of the MLA structure patterned on the device. 29
Fig. 3- 5 The schematic diagram of equipments for electrodeposition 32
Fig. 3- 6 Schematic diagram of ZnO nanobridge in the gap of interdigitated electrode 32
Fig. 3- 7 Shematic diagram of equipments used for characterizing photodetectors. 36
Fig. 4- 1 The TEM images of (a)birght-field, (b) high-resolution and (c) SAED-pattern revealing ZnO nanostructure synthesized by mixing with 2.5 M 10 ml TMAH and 0.16 M Zn(Ac)2 methanol solution 5 ml at 150oC for 24 h. (d) and (e) show the d-spacing measurement marked in (b). 38
Fig. 4- 2 The SEM images of ZnO nanostructures synthesized in reaction solution having different [Zn2+]. The concentration of TMAH, reaction temperature and reaction time are 2.5 M, 150oC and 24 h, respectively. 40
Fig. 4- 3 The variation of length and diameter of ZnO nanowires synthesized by different Zn2+ concentrations. 40
Fig. 4- 4 SEM images of as-prepared ZnO at 150oC for a reaction time of 24 h with PVA addition of (a) 0 wt%, (b) 0.23 wt%, (c) 0.46 wt%, and (d) 0.92 wt%. 42
Fig. 4- 5 (a) XRD patterns of as-prepared ZnO at 150oC for a reaction time of 24 h with PVA addition of 0.92 wt%. Average length of 1-D structures plotted as a function of (b) PVA addition and (c) growth time. 43
Fig. 4- 6 The relationship between PVA content and Zn2+ ion concentration in methyl solution at room temperature. 45
Fig. 4- 7 FT-IR spectra for (a) PVA and (b) the residual solutions of PVA+TMAH aqueous solution after reaction at 150oC for 12 h. 45
Fig. 4- 8 The channel cross-section area between electrode gap is plotted as a function of (a) applied electrical field, and (b) frequency. 48
Fig. 4- 9 (a), (b) I-V characteristics and (c) time-dependent photocurrent characterized at UV light 365 nm with a power density of 1.46 mW/cm2. 50
Fig. 4- 10 Photocurrent of ZnO nanowires-based UV photodetector plotted as a function of irradiative wavelength. 51
Fig. 4- 11 (a) Photoluminescence spectra of ZnO/PMMA hybrid film with different blending amounts of ZnO nanowires into PMMA. (b) Integral area ratio of UV/visible and (c) near-band-edge emission plotted as a function of blending amount of ZnO nanowires. (d) The corresponding SEM image of ZnO nanowires which blended into PMMA. 55
Fig. 4- 12 The FT-IR spectra of PMMA and ZnO/PMMA hybrid films. 57
Fig. 4- 13 Schematic diagram of (a) ZnO nanostructures blended into PMMA matrix with varied vol%, and (b) the effect of PMMA passivation layer on the rigid band diagram of ZnO. 57
Fig. 4- 14 (a) SEM image of ZnO nanoparticles, and (b) corresponding PL spectra of ZnO/PMMA with varied volume ratio. (c) the enlarged view of (b) in the range of 360-400 nm. 59
Fig. 4- 15 (a) The transmittance of ZnO/PMMA hybrid film with different blending amounts of ZnO nanoparticles in PMMA. (b) the optical bandgap of ZnO and ZnO/PMMA composite (0.5×10-3 vol%). 61
Fig. 4- 16 (a) transmittance (without substrate) of flat and MLA-patterned PMMA films, and (b) reflection (made with SiO2/Si substrate) of flat and MLA-patterned PMMA films. 63
Fig. 4- 17 Optical microscopic image of aligned ZnO nanowires between electrodes (a) without and (b) with PMMA capping layer. 66
Fig. 4- 18 (a) I-V curves taken in dark and under illumination for samples with different surface treatments, and corresponding SEM images of (b) as-fabricated and (c) MLA-patterned ZnO-nanowires photodetectors. 66
Fig. 4- 19 (a) XRD pattern, (b) bright field and (c) dark field image of Ag-decorated ZnO NWs after being irradiated in AgNO3 solution at =365 nm for 30 mins. 69
Fig. 4- 20 (a) HRTEM image shows the interface between Ag nanoparticle and ZnO nanowire. The corresponding nano-beam SAED of ZnO nanowire, Ag nanoparticle and ZnO/Ag interface (circle (b), (c) and (d)) are shown in (b), (c) and (d), respectively. (e) HRTEM image reveals the Ag/ZnO interface. 70
Fig. 4- 21 (a) I-V characteristics, (b) photoresponsivity and (c) time-dependent photocurrent of ZnO nanowires-based UV detector decorated with and without Ag nanoparticles, received under UV light ( l=365 nm) with power density of 964 W/cm2. 73
Fig. 4- 22 Schematic energy band diagrams for blank and Ag-decorated ZnO nanowires-based photodetectors illustrating the states in dark and under UV light illumination. 75
Fig. 4- 23 XRD patterns of Ag2O /ZnO heterostructure synthesized with various pH value. (a) and (b) show the results of ZnO nanowires immersed in blank NaOH and AgNO3 solution, respectively. (c), (d) and (e) show the results of ZnO/Ag2O heterostructure synthesized under identical AgNO3 concentration with various pH values: (c) 12,(d) 13 and (e) 13.9. 78
Fig. 4- 24 SEM images of ZnO NWs immersed in blank (a) NaOH and (b) AgNO3 solution, respectively. (c), (d) and (e) show the images of ZnO/Ag2O heterostructure synthesized under identical AgNO3 concentration with various pH values of 13.9, 13 and 12, respectively. 80
Fig. 4- 25 (a) I-V characteristics of blank ZnO nanowire photodetectors measured both in dark and under 365 nm UV light illumination with a power density of 1.46 mW/cm2. (b) Photoresponse behavior of blank ZnO nanowire photdetectors measured under 365 nm UV light with different irradiation powers (operation bias -4 V). 82
Fig. 4- 26 Photocurrent of ZnO NWs plotted as a function of excitation intensity ( =365 nm) with -4 V applied bias. 83
Fig. 4- 27 The energy band diagram near the surface of Ag2O/ZnO in dark and and after turning on the UV light. 83
Fig. 4- 28 SEM images of electrodeposited Zn films with varied current density at an identical deposition time of 450 s. 86
Fig. 4- 29 The (a) grain size and (b) thickness of Zn films plotted as a function of deposition time. 88
Fig. 4- 30 X-ray diffraction patterns of as-synthesized ZnO-NWs films grown on the seed layers with different grain sizes. 88
Fig. 4- 31 Texture coefficient (TC) of the low index planes of ZnO NWs obtained on various seed-layer grain sizes. 90
Fig. 4- 32 The diameters of ZnO NWs are plotted as a function of Zn grain size. 90
Fig. 4- 33 The SEM images of ZnO nanobridge UV detector with varied ZnO diameter (a) 530 nm and (b) 190 nm. The corresponding I-V curves of ZnO nanowires photodetectors. 92
Fig. 4- 34 Time-dependent photoresponse of ZnO nanowires photodetectors characterized in air under 0.1 V bias ( =365 nm, intensity=72 W/cm2). The green lines indicate that the decay process can be fitted well by a biexponential relaxation equation. 92
Fig. 4- 35 Photoluminescence spectra of ZnO NWs of different diameters measured at room temperature with an excitation wavelength of 325 nm. 94
Fig. 4- 36 Schematic energy band illustration for ZnO NWs in recovery process: ① band-to-band recombination mechanism, ② photogenerated electrons trapped by , ③ is formed due to trapping of electron by and acts as shallow donor before recombination. 94
Fig. 4- 37 (a) photoluminescence spectrum of ZnO NWs treated with different hydrothermal duration at 200oC. (b) the ratio of UV/green plotted as a function of hydrothermal duration in pure water. 96
Fig. 4- 38 The O1s XPS spectra of ZnO NWs treated with varied hydrothermal time. 97
Fig. 4- 39 (a) The I-V characteristics and (b) the time-dependent photocurrents of ZnO NW-based photodetectors with different hydrothermal durations. ( =365 nm, power density=1.46 mW/cm2). 99
Fig. 4- 40 (a) time-dependent photoresponse of post-hydrothermal ZnO NWs with an applied bias of 0.5 V under different power density of light ( =365 nm). (b) photocurrent of ZnO NWs measured as a function of excitation intensity with 0.5 V applied bias. 101




表目錄
Tab. 3- 1 The chemicals used in this study 24

Tab. 4- 1 Results for O1s XPS spectra of ZnO NWs with different hydrothermal time. 97


[1]S. M. Sze, “Semiconductor devices: Physics and technology John Wiley & Sons, New York, (1985).
[2]E. Monroy, F. Omnés, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Tech., 18 (2003) R33.
[3]I. Cantarell and I. Almodovar, “Prediction, acceleration and correction of fatique effects in photomultiplier tubes Int. J. Appl. Radiat. Isotopes, 16 (1965) 91-95.
[4]A. R. Franklin, W. W. Holloway, and D. H. Mcmahon, Photomultiplier tube cooling device Rev. Sci. Instrum. 36 (1965) 232.
[5]G. Chodil, D. Hearn, and R. C. Jopson, “Background events in photomultiplier tubes at high altitudes Rev. Sci. Instrum. 36 (1965) 394-395.
[6]R. Krode and J. Geist, “Quantum efficiency stability of silicon photodiode Appl. Opt. 26 (1987) 5284-5290.
[7]L. R. Canfield, J. Kerner, and R. Krode, Stability and quantum efficiency performance of silicon photodiode detectors in the far ultravioler Appl. Opt. 28, (1989) 3940-3943.
[8]H. Morkoç, S. Stritea, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies J. Appl. Phys. 76 (1994) 1363-1398.
[9]J. J. T. Torvik, J. I. Pankove, and B. J. Van Zeghbroeck, “Comparison of GaN and 6H-SiC p-i-n photodetectors IEEE Trans. Electron. Dev. 46 (1999) 1326-1331.
[10]T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa, and J. Akimitsu, “Superconductivity in carrier-doped silicon carbide Sci. Technol. Adv. Mater. 9 (2008) 044204.
[11]D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire Appl. Phys. Lett. 68 (1996) 2100-2102.
[12]C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Small-signal frequency response of long-wavelength vertical-cavity lasers IEEE Photonics Tech. Lett. 13 (2001) 1041-1135.
[13]D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN Appl. Phys. Lett. 74 (1999) 762-764.
[14]P. D. Dapkus, “Metalorganic chemical vapor deposition Annu. Rev. Mater. Sci. 12 (1982) 243-269.
[15]D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, “Visible blind GaN p-i-n photodiodes Appl. Phys. Lett. 72 (1998) 3303-3305.
[16]B. Butun, T. Tut, E. Ulker, T. Yelboga, and E. Ozbay, “High-performance visible-blind GaN-based p-i-n photodetectors“, Appl. Phys. Lett., 92 (2008) 033507.
[17]D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, and X. Fan, “Ultraviolet Schottky detector based on epitaxial ZnO thin film“, Solid State Electron. 52 (2008) 679-682.
[18]K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, and D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film Solid State Electron. 51 (2007) 757-761.
[19]Y. Li, A. Paulsen, I. Yamada, Y. Koide, and J. J. Delaunay, “Bascule nanobridges self-assembled with ZnO nanowires as double Schottky barrier UV swiches Nanotech. 21 (2010) 295502.
[20]S. Liang, H. Sheng, Y. Liu, Z. huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors J. Cryst. Growth, 225 (2001) 110-113.
[21]M. H. huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13 (2001) 113-116.
[22]D. A. Neamen, “Semiconductor physics and devices: basic principles, McGraq-Hill (2003).
[23]M. Andrés Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous Solutions, J. Chem. Soc. Faraday Trans. 86 (1990) 959-963.
[24]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.
[25]J. A. Sans, A. Segura, F. J. Manjón, B. Marí, A. Munõz, and M. J. Herrera-Cabrera, “Optical properties of wurtzite and rock-salt ZnO under pressure Microelectron. J. 36 (2005) 928-932.
[26]A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102 (2007) 071101.
[27]V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure J. Phys. Chem. A, 115 (2011) 4354-4358.
[28]A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok and T. Y. Seong, “Growth and characterization of hypothetical zinc-blende ZnO films on GaAs.001. substrates with ZnS buffer layers, Appl. Phys. Lett. 76 (2000) 550-552.
[29]R. A. Laudise, A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem. 64 (1960) 688-691.
[30]L. S. Mende and J. L. M. Driscoll, “ZnO-nanostructures, defects, and devices, Mater. Today, 10 (2007) 40-48.
[31]J. Han, P. Q. Mantas, and A. M. R. Senos, “Defect chemistry and electrical characteristics of undoper and Mn-doped ZnO J. Eur. Cerm. Soc. 22 (2002) 49.
[32]F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, “Energetics of native defects in ZnO, J. Appl. Phys. 90 (2001) 824-828.
[33]Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelt of semiconducting oxide Science, 291 (2001) 1947-1949.
[34]D. D. Lin, W. Pan, and H. Wu, “Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning, J. Am. Ceram. Soc. 90 (2007) 71-76.
[35]W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett. 80 (2002) 4232-4234.
[36]W. T. Chiou, W. Y. Wu, and J. M. Ting, “Growth of single crystal ZnO nanowires using sputter deposition Diam. Relat. Mater. 12 (2003) 1841-1844.
[37]H. Zhang, D. R. Yang, X. Y. Ma, N. Du, J. B. Wu, and D. L. Que, “Straight and Thin ZnO Nanorods:  Hectogram-Scale Synthesis at Low Temperature and Cathodoluminescence J. Phys. Chem. B, 110 (2006) 827-830.
[38]S. Xu, N. Adiga, S. Ba, T. Dasgupta, C. F. J. Wu, and Z. L. Wang, “Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments, ACS Nano, 3 (2009) 1803-1812.
[39]L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution, Adv. Mater. 15 (2003) 464-466.
[40]S. Xu, Y. Shen, Y. Ding, and Z. L. Wang, “Growth and transfer of monolithic horizontal ZnO nanowire superstructures onto flexible substrates, Adv. Func. Mater. 20 (2010) 1493-1495.
[41]E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis, Nat. Nanotech., 5 (2010) 525-530.
[42]X. Duan, C. Niu, V. Sahi, J. Chen, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-performance thin-film transistors using semiconductor nanowires and nanoribbons, Nat. 425 (2003) 274-278.
[43]Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razvi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing Nano Lett. 8 (2008) 20-25.
[44]F. Kim, S. Kwan, J. Akana, and P. Yang, “Langmuir-Blodgett nanorod assembly, J. Am. Chem. Soc. 123 (2001) 4360-4361.
[45]K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, “Selforganized fabrication of planar GaAs nanowhisker arrays Appl. Phys. Lett. 69 (1996) 386-388.
[46]M. S. Islam, S. Sharma, T. I. Kamins, and R. S. Williams, “Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces Nanotech. 15 (2004) L5-L8.
[47]R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S. Huang, and C. C. Chen, “On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity Small, 4 (2008) 925-929.
[48]J. F. Conley, L. Stecker, and Y. Ono, “Directed integration of ZnO nanobridge devices on a Si substrate Appl. Phys. Lett. 87 (2005) 223114.
[49]S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Self-powered nanowire devices Nat. Nanotech. 5 (2010) 366-373.
[50]Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires Nanotech. 20 (2009) 045501.
[51]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain Nano Lett. 7 (2007) 1003-1009.
[52]L. Liao, H. B. Lu, J. C. Li, D. F. Wang, D. J. Fu, and C. Liu, “Size Dependence of Gas Sensitivity of ZnO Nanorods J. Phys. Chem. C, 111 (2007) 1900-1903.
[53]A. Z. Sadek, S. Choopun, W. Wlodaeski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing IEEE Sens. J. 7 (2007) 919-924.
[54]J. D. Prades, F. H. Ramirez, R. J. Diaz, M. Manzanares, T. Andreu, A. Cirera, A. R. Rodriguez, and J. R. Morante, “The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires, Nanotech. 19 (2008) 465501.
[55]S. R. Morrison, “The Chemical Physics of Surfaces 2nd Edition Plenum Press. New York and London, (1990).
[56]M. Batzill and U. Diebold, “The surface and materials science of tin oxide, Prog. Surf. Sci. 79 (2005) 47-154.
[57]H. Chon and J. Pajares, “Hall effect studies of oxygen chemisorption on zinc oxide, J. Catal. 14 (1969) 257-260.
[58]A. B. Djuršić and Y. H. Leung, “Optical Properties of ZnO Nanostructures, Small, 2 (2006) 944-961.
[59]M. Liu and H. K. Kim, “Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma “, Appl. Phys. Lett. 84 (2004) 173-175.
[60]S. Lany and A. Zunger, “Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors, Phys. Rev. B, 72 (2005) 035215.
[61]T. Kawano, J. Yahiro, H. Maki, and H. Imai, “Epitaxial growth of wurtzite ZnO crystals in an aqueous solution system, Chem. Lett. 35 (2006) 442-443.
[62]X. Wu, H. Bai, C. Li, G. Lu, and G. Shi, “Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature, Chem. Comm., 42 (2006) 1655-1657.
[63]袁詩璞,第五講-電鍍液的組成及其作用(一),電鍍與塗飾,第27期 (2008) 41-44.
[64]A. Gomes, and M. I. Silva Pereira, “Pulsed electrodeposition of Zn in the presence of surfactants Electrochim Acta, 51 (2006) 1342-1350.
[65]J. Y. Lee, J. W. Kim, M. K. Lee, H. J. Shin, H. T. Kim, and S. M. Park, “Effects of organic additives on initial stages of zinc electroplating on iron, J. Electrochem. Soc. 151 (2004) C25-C31.
[66]M. C. Li, L. L. Jiang, W. Q. Zhang, Y. H. Qian, S. Z. Luo, and J. N. Shen, “Electrodeposition of nanocrystalline zinc from acidic sulfate solutions containing thiourea and benzalacetone as additives J. Solid State Electrochem, 11 (2007) 549-553.
[67]K. M. S. Youssef, C. C. Koch, and P. S. Fedkiw, “Influence of Additives and Pulse Electrodeposition Parameters on Production of Nanocrystalline Zinc from Zinc Chloride Electrolytes J. Electrochem. Soc., 151 (2004) C103-C111.
[68]K. L. Lai, M. H. Hon, and I. C. Leu, “Pattern formation on polymer resist by solvent-assisted nanoimprinting with PDMS mold as a solvent transport medium J. Micromech. Microeng. 21 (2011) 075013.
[69]K. L. Lai, M. H. Hon, and I. C. Leu, “Soft imprint lithography using swelling/deswelling characteristics of a polymer mold and a resist induced by a poor solvent J. Micromech. Microeng. 19 (2009) 037001.
[70]A. Kawska, P. Duchstein, O. Hochrein, and D. Zahn, Atomistic mechanisms of ZnO aggregation from ethanolic solution: ion association, proton transfer, and self-organization“ Nano Lett. 8 (2008) 2336-2340.
[71]W. Sang, Y. Fang, J. Fan, Y. He, J. Min, Y. Qian, “Novel synthesis method of ZnO nanorods by ion complex transformed PVA-assisted nucleation J. Cryst. Growth, 299 (2007) 272-276.
[72]C. Xu, A. S. Teja, “Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles J. Supercrit. Fluid, 44 (2008) 85-91.
[73]O. Harnack, C. Pacholski, H. Weller, A. Yasuda, and J. M. wessels, “Rectifying behavior of electrically aligned ZnO nanorods Nano. Lett. 3 (2003) 1097-1101.
[74]Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowires films by photocurrent measurements Appl. Phys. Lett. 86 (2005) 123117.
[75]K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodeteectrors by Au nanoparticles J. Phys. Chem. C, 114 (2010) 19835-19839.
[76]C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization J. Am. Chem. Soc. 129 (2007) 12096-12097.
[77]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders J. Appl. Phys. 79 (1996) 7983-7990.
[78]A. B. Djuršić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. G. Rao, W. K. Chan and H. F. Lui, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures Adv. Funct. Mater. 14 (2004) 856-864.
[79]D. Sun and H. J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methul methacrylate) 94 (2009) 253106.
[80]D. Haranath, S. Sahai, A.G. Joshi, B. K. Gupta, and V. Shanker, “Investigation of confinement effects in ZnO quantum dots 42 (2009) 425701.
[81]Q. H. Chen, S. Y. Shi, and W. G. Zhang, “Study on luminescence chearacteristic of the ZnO/polymer hybrid films Colloid Polym. Sci. 287 (2009) 533-540.
[82]X. W. Du, Y. S. Fu, J. Sun, X. Han, and J. Liu, „Complete UV emission of ZnO nanoparticles in a PMMA matrix Semicond. Sci. Technol. 21 (2006) 1202-1206.
[83]N. Serpone, D. Lawless, and R. Khairutdinov, “size effects on the photophysical properties of colloidal anatase TiO2 particles; size quantization or direct transitions in this indirect semiconductor? J. Phys. Chem. 99 (1995) 16646-16654.
[84]S. K. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials Opt. Mater. 29 (2007) 1481-1490.
[85]Y. P. Huang, H.P. David Shieh, and S. T. Wu, “Applications of Multidirectional Asymmetrical Microlens-Array Light-Control Films on Reflective Liquid-Crystal Displays for Image Quality Enhancement Appl. Optics, 43 (2004) 3656-3663.
[86]M. dean, A. Mckee, and M. Bowker, “Oxygen adsorption on a supported Ag catalyst and modification by surface promoters Sur. Sci. 211 (1989) 1061-1067.
[87]M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, and Praserthdam, “Ag-ZnO catalysrs for UV-photodegradation of methylene blue Appl. Catal. B, 63 (2006) 305-312.
[88]O. Ichiose, M. kawaguchi, and N, Furuya, “Effect of silver catalyst on the activity and mechanism of a gas diffusion type oxygen cathode for chlor-alkali electrolysis J. Appl. Elctrochem. 34 (2004) 55-59.
[89]O. Akhavan, “Photocatalytic reduction of grapheme oxides hybridized by ZnO nanoparticles in ethanol Carbon, 49 (2011) 49 11-18.
[90]J. J. Wu, C. H. Tseng, “Photocatalytic properties of nc-Au/ZnO nanorod composites“ Appl. Catal. B-Environ. 66 (2006) 51-57.
[91]M. W. Allen, M. M. Alkaisi, S. M. Durbin, “Metal schottky diodes on Zn-polar and O-polar bulk ZnO“ Appl. Phys. Lett. 89 (2006) 103520.
[92]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, ZnO Schottky ultraviolet photodetectors J. Crys. Growth, 225 (2001) 110-113.
[93]H. Sheng, S. Muthukumar, N. W. Emanetoglu, Y. Lu, Schottky diode with Ag on (1120) epitaxial ZnO film Appl. Phys. Lett.80 (2002) 2132-2134.
[94]H. Kim, H. Kim, D. W. Kim,“ Silver Schottky contacts to a-plane bulk ZnO“ J. Appl. Phys. 108 (2010) 074514.
[95]M. W. Allen, S. M. Durbin, “Silver oxide schottky contacts on n-type ZnO“ Appl. Phys. Lett. 91 (2007) 053512.
[96]S. Matsusima, Y. Teraoka, N. Miura, and N. Yamazoe, “Electron interaction between metal additives and tin dioxide-based gas sensors Jpn. J. Appl. Phys. 27 (1988) 1798-1802.
[97]H. A. Atwater, A. Polman, “ Plasmonics for improved photovoltaic devices Nat. Mater. 9 (2010) 205-213.
[98]M. J. Kim, S. Kim, H. Park, and Y. D. Huh, “Morphological evolution fo Ag2O microstructures from cubes to octapods and their antibacterial activities“ Bull. Korean Chem. Soc. 32 (20110 3793-3795.
[99]W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and j. Cui, “Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photcatalytic activity“ ACS Appl. Mater. Inter. 2 (2010) 2385-2392.
[100]U. K. Barik, S. Srinivasan, C. L. Nagendra, A. Subrahmanyam, “Electrical andoptical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen Thin Solid Films, 429 (2003) 129-134.
[101]袁詩璞,第十講-鍍層的針孔、麻點與孔隙率,電鍍與塗飾,第28期 (2008) 46-50.
[102]T. Pauporté, G. Bataille, L. Joulaud, and F. J. Vermersch, “Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their Cassie-Wenzel transition after hydrophobization J. Phys. Chem. C, 114 (2010) 194-202.
[103]J. Liu, J. She, S. Deng, J. Chen, and N. Xu, “Ultathin seed-layer for tuning of ZnO nanowires arrays and their field emission characteristics J. Phys. Chem. C 112 (2008) 11685-11690.
[104]A. Bera and D. Basak, “Role of defects in the anomalous photoconductivity in ZnO nanowires Appl. Phys. Lett. 94 (2009) 465501.
[105]N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zao, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction ACS Appl. Mater Inter. 2 (2010) 1973-1979.
[106]A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation J. Phys. Chem. B, 104 (2000) 1715-1723.
[107]J. F. Moulder, Handbook of X-ray photoelectron spectroscopy, Eden Prairie 1995.
[108]O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, Synthesis and characterization of Ag- or Sb- doped ZnO nanorods by a facile hydrothermal route, J. Phys. Chem. C, 114, 12401-12408, 2010.
[109]Z. G. Wang, X. T. Zu, S. Z. Yang, L. M. Wang, “Blue luminescence from carbon modified ZnO nanoparticles J. Mater. Sci. 41, 3729–3733, 2006.
[110]B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg and C. Wöll, “Partial dissociation of water leads to stable superstructures on the surface of zinc oxide Angew. Chem. Int. Ed. 43 (2004) 6641-6645.
[111]M. A. Henderson, “The interaction of water with solid surfaces: fundamental aspects revisited Surf. Sci. Rep. 46 (2002) 1-308.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊