跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱黛汶
研究生(外文):Tai-WenChiu
論文名稱:Sn-xAg-0.5Cu合金應用於光伏焊帶之適用性探討及界面微觀組織解析
論文名稱(外文):Applicability Evaluation and Interfacial Microstructure Analysis of Sn-xAg-0.5Cu Alloys for Photovoltaic Ribbon
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenLi-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:58
中文關鍵詞:SAC305SAC105光伏焊帶Ag3Sn電性
外文關鍵詞:SAC305SAC105photovoltaic ribbonAg3Snelectrical property
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用SAC0105、SAC105及SAC305三種不同Ag含量之銲錫合金探討其應用於光伏焊帶之適用性,實驗分為兩個部分進行,第一部分為合金性質,包含了微觀組織觀察、量測熔斷電流及銲錫與銀基材之接觸角,根據銲錫之潤濕性和電性判斷其是否適用於光伏焊帶。第二部分為接合材之solder/Cu、solder/Ag界面微觀組織觀察及電性探討,藉由電流密度達10^3A/cm2的長時間通電實驗加速界面IMC生長,以釐清界面微觀組織對試片總體電阻之影響。
由接觸角實驗發現,銲錫之潤濕性隨Ag含量降低而變差;且SAC0105之錫球於升溫過程中發生移動,導因於Ag濃度梯度大,致使銀電極快速消耗完畢而無法接合,故SAC0105合金並不適用於光伏焊帶,此後實驗不再討論。SAC105銲錫內部之共晶區所占總面積小於SAC305,且其β-Sn為連續分佈,相較於SAC305之樹枝狀分佈,電子可藉由低電阻之基地相進行傳遞,遭遇高電阻IMC相之機率較低,產生焦耳熱較小,故可承受較高熔斷電流密度(1027.5 A/cm^2 〉 986.1 A/cm^2)。
回銲後,因SAC105/Ag界面之Ag濃度梯度比SAC305/Ag大,導致其剩餘銀電極層小於SAC305 (8.0 μm 〈 12.7 μm),故SAC105試片體電阻大於SAC305 (0.066 Ω 〉 0.059 Ω)。經通電處理後,銀電極層組成改變,由表面開始生成Ag3Sn,此化合物層隨通電時間增加而增厚,並使得剩餘純銀層減少;雖在通電100小時之後,SAC105的Ag3Sn厚度與SAC305差異不大(5.4 μm 〉 5.2 μm),但因為其剩餘純銀層厚度小(2.9 μm 〈 4.4 μm),故試片體電阻較大(0.077 Ω 〉 0.070 Ω)。因此,選擇Ag含量高之合金應用於光伏焊帶可避免銀電極過度消耗的情況發生,亦可降低迴路之串聯電阻;但SAC105經長時間通電後其仍尚存銀電極層,其體電阻也僅略大於SAC305,故在成本減少之考量下,其仍具有應用之潛力。
The applicability of SAC305, SAC105, and SAC0105 applying to photovoltaic (PV) ribbon are investigated in this study which contains two parts. In part one, the solders’ properties including microstructure, fusion currents, and contact angles on silver paste are investigated. The applicability of PV ribbon is estimated by wettability and electrical property. In part two, the interfacial microstructure at solder/Cu and solder/Ag in solder joint are observed. We also apply electrified treatment with hign current density to sample, and measure the resistance of sample in order to clarify interface transition how to affect sample’s resistance.
From contact angle experiment, the wettability are getting worse when silver content becomes less, and SAC0105 solder ball is shifting at reflow process caused by great Ag concentration gradient making Ag electrode layer totally consumed and solder disconnected with Ag substrate. So, SAC0105 is improper for applying to PV ribbon and not discussed in following experiment. From the microstructures of solders, area of eutectic region of SAC305 is larger than SAC105, and the matrix phase, β-Sn, is continuous distribution. Unlike the dendrite β-Sn in SAC305, electrons can pass through the matrix phase with lower resistance, and have less probability to encounter IMC with higher resistance resulting in producing less Joule heat. Therefore, SAC105 can suffer higher fusion current density than SAC305 (1027.5 A/cm^2 〉 986.1 A/cm^2).
After reflow, the thickness of remaining Ag electrode of SAC105 is smaller than SAC305 (8.0 μm 〈 12.7 μm) because of the Ag concentration gradient between SAC105 and Ag substrate is larger. Therefore, the resistance of SAC105 is larger than SAC305 (0.066 Ω 〉 0.059 Ω). After electrified, the composition of Ag electrode has a transition to composite layers composed of Ag3Sn compound and pure Ag, and Ag3Sn layer gets thicker with electrified time increased. Although the Ag3Sn thickness of SAC105 is nearly equal to SAC305 (5.4 μm 〉 5.2 μm), but remaining Ag electrode for SAC105 is thinner (2.9 μm 〈 4.4 μm), which leads to higher resistance (0.077 Ω 〉 0.070 Ω). As a result, applying high Ag content solders to PV ribbon can avoid over-consuming for Ag electrode layer, which can decrease series resistance. However, SAC105 still has remaining Ag electrode after electrified for 100hr, and its resistance is slightly larger than SAC305. Therefore, based on the reason for cost down, SAC105 can be a choice for applying to PV ribbon.
中文摘要.................................................I
Abstract...............................................III
總目錄..................................................VI
表目錄................................................VIII
圖目錄..................................................IX

第一章 前言..............................................1
第二章 文獻回顧..........................................2
2-1 銲錫的應用與無鉛化...................................2
2-2 常用無鉛銲錫合金.....................................2
2-2-1 Sn.................................................2
2-2-2 Sn-Cu合金..........................................3
2-2-3 Sn-Zn合金..........................................3
2-2-4 Sn-Ag-Cu合金.......................................3
2-3 接合材之界面反應相關文獻回顧.........................4
2-3-1 界面反應動力學.....................................4
2-3-2 SAC合金與金屬基材界面反應之相關文獻回顧............5
2-3-3 通電對接合界面之影響...............................5
2-4 光伏焊帶於矽基太陽能電池相關應用.....................6
第三章 實驗方法.........................................14
3-1 接觸角量測..........................................14
3-2 熔斷電流實驗........................................14
3-3 通電實驗............................................15
3-3-1 試片製備..........................................15
3-3-2 實驗配置..........................................15
3-4 界面顯微組織觀察及元素分佈分析......................16
3-5 體電阻量測..........................................17
第四章 實驗結果.........................................24
4-1 潤濕性..............................................24
4-2 銲錫合金微觀組織....................................24
4-3 熔斷電流............................................25
4-4 接合材之微觀組織....................................25
4-4-1 界面微觀組織......................................25
4-4-2 元素分佈..........................................26
4-5 體電阻..............................................27
第五章 討論.............................................46
5-1 Ag含量對銲錫性質之影響..............................46
5-2 Ag含量差異對各界面IMC成長及其對試片電性之影響.......46
5-2-1 solder/Cu.........................................46
5-2-2 solder/Ag.........................................47
第六章 結論.............................................52
參考文獻................................................53
1. 翁敏航,「太陽能電池-原理、元件、材料、製程與檢測技術」,東華書局,第四章,民國99年。
2. S. Nieland, M. Baehr, A. Boettger, A. Ostmann and H. Reichl, “Advantages of Microelectronic Packaging for Low Temperature Lead Free Soldering of Thin Solar Cells, 22th European Photovoltaic Solar Energy Conference, (2007), 3-7 September, Milan, Italy.
3. W. C. Yang, H. C. Ay, and Y. J. Ciou, “A Study of Optimal Manufacturing Parameters with Lead-Free Solder on the c-Si Photovoltaic Cells by Using Hot-Air Tabbing, International Symposium on Transport Phenomena, (2011), 8-11 November, Delft, Netherlands.
4. 張淑如,「鉛對人體的危害」,勞工安全衛生簡訊,第12期,17-18頁,民國84年。
5. P. Liu, P. Yao and J. Liu, “Evolutions of the Interface and Shear Strength between SnAgCu–xNi Solder and Cu Substrate During Isothermal Aging at 150°C, Journal of Alloys and Compounds, Vol.486, (2009), pp.474-479.
6. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai and J. Luo, “A Review on the Interfacial Intermetallic Compounds between Sn-Ag-Cu Based Solders and Substrates, Journal of Materials Science: Materials in Electronics, Vol.21, (2010), pp.421-440.
7. K.W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys, Journal of Electronic Materials, Vol.29, (2000), pp.1122-1236.
8. 曾堉,「金屬基材與介金屬相在無鉛銲料中溶解現象的探討」,國立臺灣科技大學化學工程系碩士論文,43-128頁,民國95年。
9. D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., The Mechanics of Solder Alloy Interconnects, p.60.
10. Y. Tian, Q. M. Zhang, and Z. Q. Li, “Electrical Transport Properties of Ag3Sn Compound, Solid State Communications, Vol.151, (2011), pp.1496-1499.
11. M. Amagai, Y. Toyoda, and T. Tajima, “High Solder Joint Reliability with Lead Free Solders, Electronic Components and Technology Conference, 2003, Proceedings, 53rd, pp.317-322, 27-30 May, New Orleans, Louisiana, USA.
12. F. X. Che, E. C. Poh, W. H. Zhu, and B. S. Xiong, “Ag Content Effect on Mechanical Properties of Sn-xAg-0.5Cu Solders, 9th Electronics Packaging Technology Conference, 10-12 December, (2007), Singapore.
13. S. Terashima, Y. Kariya, T. Hosoi and M. Tanakai, “Effect of Silver Content on Thermal Fatigue Life of Sn-xAg-0.5Cu Flip-Chip Interconnects, Journal of Electronic Materials, Vol.32, (2003), pp.1527-1533.
14. Y. Kariya, T. Hosoi, S. Terashima, M. Tanaka, and M. Otsuka, “Effect of Silver Content on the Shear Fatigue Properties of Sn-Ag-Cu Flip-Chip Interconnects, Journal of Electronic Materials, Vol.33, (2004), pp.321-328.
15. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders, Journal of the Minerals, Metals and Materials Society, Vol.45, (1993), pp.14-19.
16. 賴玄金,「從IPC Work’99會議看無鉛銲錫電子構裝之應用現況與發展趨勢」,工業材料,第158期,99-107頁,民國89年。
17. P. Zarrow, “Lead-Free: Don't Fight a Fact, Deal with it!, Circuits Assembly, August, (1999), pp.18-20.
18. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics, Materials Science and Engineering: R: Reports, Vol.27, (2000), pp.95-141.
19. N. C. Lee, “Getting Ready for Lead Free Solders, Surface Mount Technology, Vol.26, (1997), pp.65-73.
20. K. N. Tu, and J. C. M. Li, “Spontaneous Whisker Growth on Lead-Free Solder Finishes, Materials Science and Engineering: A, Vol.409, (2005), pp.131-139.
21. W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R. S. Celestre, A. A. Macdowell, Y. Y. Bong, L. Nguyen, and G. T. T. Sheng, “Structure and Kinetics of Sn Whisker Growth on Pb-Free Solder Finish, Electronic Components and Technology Conference, 2002, Proceedings, 52nd, pp.628-633, 28-31 May, San Diego, CA, USA.
22. M. T. Jahn and A. R. Saavedra, “Fatigue and Tensile Properties of a Newly Developed Tin-Copper Alloy, Journal of Materials Science Letters, Vol.11, (1992), pp.1596-1598.
23. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review, Journal of Electronic Materials, Vol.23, (1994), pp. 693-700.
24. Ed. T. Lyman, H. E. Bouer, and W. J. Carnes, “Metals Handbook Vol.3 Alloy Phase Diagrams, ASM International, Ohio, USA, (1992), p.269, and p.769.
25. S. L. Allen, M. R. Notis, R. R. Chromik, and R. P. Vinci, “Microstructural Evolution in Lead-Free Solder Alloys: Part I. Cast Sn-Ag-Cu Eutectic, Journal of Materials Research, Vol.19, (2004), pp.1417-1424.
26. S. Mannan and M. Clode, “Dissolution of Solids in Contact with Liquid Solder, Soldering and Surface Mount Technology, Vol.16, Issue 3, (2004), pp.31-33.
27. R. A. Rapp, A. Ezis, and G. J. Yurek, “Displacement Reactions in the Solid State, Metallurgical and Materials Transactions B, Vol.4, (1973), pp.1283-1292.
28. A. Rahn, “The Basics of Soldering, Wiley, New York, (1993).
29. W. Peng, E. Monlevade, and M. E. Marques, “Effect of Thermal Aging on the Interfacial Structure of SnAgCu Solder Joints on Cu, Microelectronics Reliability, Vol.47, (2007), pp.2161-2168.
30. Y.W. Wang, Y.W. Lin, and C.R. Kao, “Kirkendall Voids Formation in the Reaction between Ni-Doped SnAg Lead-Free Solders and Different Cu Substrates, Microelectronics Reliability, Vol.49, (2009), pp.248-25.
31. S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K. J. Puttlitz, “Ag3Sn Plate Formation in the Solidification of Near-Ternary Eutectic Sn-Ag-Cu, Journal of the Minerals, Metals and Materials Society, Vol.55, Number 6, (2003), pp.61-65.
32. C. Y. Liu, Chih Chen, C. N. Liao, and K. N. Tu, “Microstructure-Electromigration Correlation in a Thin Stripe of Eutectic SnPb Solder Stressed between Cu Electrodes, Applied Physics Letters, Vol.75, Issue 1, (1999), pp.58-60.
33. C. Y. Liu, Chih Chen, and K. N. Tu, “Electromigration in Sn-Pb Solder Strips as a Function of Alloy Composition, Journal of Applied Physics, Vol.88, Issue 10, (2000), pp.5703-5709.
34. H. Ye, C. Basaran, and D. C. Hopkins, “Damage Mechanics of Microelectronics Solder Joints under High Current Densities, International Journal of Solids and Structures, Vol.40, (2003), pp. 4021-4032.
35. H. Ye, C. Basaran, and D. C. Hopkins, “Mechanical Degradation of Microelectronics Solder Joints under Current Stressing, International Journal of Solids and Structures, Vol.40, (2003), pp.7269-7284.
36. 蔡東原,「共晶型錫基合金之高荷電破壞特性探討」,國立成功大學材料科學及工程學系碩士論文,66頁,民國93年。
37. D. H. Neuhaus and A. Münzer, “Industrial Silicon Wafer Solar Cells, Advances in OptoElectronics, Vol.2007, (2008), pp.1-15.
38. J. Moyer, W. Zhang, E. Kurtz, R. Tavares, D. Buzby, and S. Kleinbach, “The Role of Silver Contact Paste on Reliable Connectivity Systems, 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, Proceedings, pp.2624-2630, 6-10 September, (2010), Valencia, Spain.
39. 盧昌甫,「Cu6Sn5金屬間化合物對Sn-xCu共晶無鉛銲錫合金之高溫拉伸變形阻抗效應探討」,國立成功大學材料科學及工程學系碩士論文,3-4頁,民國96年。
40. S. Schindler and S. Wiese, “Investigation of Wettability and Interface Reactions of Sn-Pb, Sn-Cu, Sn-Ag and Sn-Ag-Cu Solders for Solar Cell Interconnections, 3rd Electronic System Integration Technology Conference, Proceedings, pp.1-5, 13-19 September, (2010), Berlin, Germany.
41. L. Ye, Z. Lai, L. Liu, and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron, International Symposium on Advanced Packaging Materials, Proceedings, pp.262-267, 14-17 March, (1999), Braselton, GA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top