跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游進暐
研究生(外文):Jin-WeiYou
論文名稱:金銀多層膜微奈米柱陣列做為表面增顯拉曼散射基板以分辨流感病毒株之研究
論文名稱(外文):Multi-layered Au-Ag Micro/Nanorod Array as SERS-active Substrate for the Distinction of Influenza Strains
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:表面增顯拉曼散射聚焦離子束金銀多層膜微奈米柱陣列快速篩檢病毒株
外文關鍵詞:Surface Enhanced Raman ScatteringFocused Ion Beammulti-layered Au-Ag micro/nanorod arrayfast-screening detectionviral strains
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
流行性感冒病毒因本身極易傳染,一旦到病毒活躍季節易造成全國性散佈,嚴重影響醫療衛生系統問題。最佳解決辦法是如何即時確診,提供對應之疫苗或投藥降低其症狀程度,以免擴大疫情。應用表面增顯拉曼散射光譜檢測致病物種已被證實其可行性,以其方法檢測病毒之文獻指出於檢測基板材料選擇,利用銀奈米柱可快速檢測其病毒特徵,或利用金微奈米結構可快速辨識出病毒外層包膜之蛋白質結構。因此,本研究以電子束蒸鍍機製備金銀層狀結構,經聚焦離子束製備其微奈米柱陣列做為表面增顯拉曼散射基板,應用拉曼光譜於快速篩檢提高辨識同為A型流感病毒不同病毒株之準確度。
本研究使用高度規則性之金銀微奈米柱陣列,以金微奈米柱陣列內嵌入單層銀層於不同位置和厚度,及重複金銀單位厚度創造多層膜,討論電磁效應傳遞之影響。首先,選用633奈米波長氦氖雷射檢測,以R6G作為分子探針評估表面增顯拉曼散射基板。結果顯示,當表面金層80 nm及內嵌銀層70 nm時,以標準方程式計算得增顯因子為1.74 x 107;當重複金銀單位厚度創造多層膜時,結構超過5層後其增顯因子下降至106。因此,重複金銀單位厚度創造多層膜相較於金微奈米柱內嵌入單層銀層於不同位置和厚度較為重要。
應用表面增顯拉曼散射光譜以金銀多層膜微奈米柱陣列於檢測流感病毒株A/WSN/33(H1N1)、A/England/12/64(H2N2)、A/Philippine/2/82(H3N2)。結果顯示,藉由拉曼位移700-900cm-1之區間,可辨識其特定分子振動結構,如Adenine ring (730 cm-1 for H3N2),Adenine (725 cm-1 for H2N2) 以及 Tyrosine (854 cm-1 for H3N2 and 848 cm-1 for H1N1)。因此,以金銀多層膜微奈米柱陣列做為表面增顯拉曼散射活性基板應用表面增顯散射光譜,能快速且確認其病毒株,提高其快速篩檢之判別。
Influenza is a highly number of infected individuals that make pandemic and epidemic healthcare problem. The response issue is how to in-situ correctly diagnosis and medicate that avoid overloading healthcare. With developing the technique using surface enhanced Raman scattering (SERS), the application to detection of pathogens has been evaluated. In the previous studies, Ag or Au nanorods array has been evaluated in field of virus signature or applied as the fingerprint area from the outermost surface of influenza. In the study, to create an Au-Ag multi-layered film, followed by micro/nanorod-patterning technique with Focused Ion Beam (FIB) as a SERS-active substrate improved the distinction of influenza strains.
In the study, well-ordered multi-layered Au-Ag micro/nanorod array is faced the major factor of expended EM effect with Au micro/nanorod array embedded position and thickness of Ag, and repeat the specific Au-Ag unit. A He-Ne laser with the wavelength of 633 nm, chosen R6G as a molecular probe, to estimate the enhancement factor of SERS reached to 1.74 x 107 for the Au-Ag micro/nanorod array with the surface Au 80 nm and embedded Ag 70 nm thickness. In addition, to found the limit of Au-Ag units more than 5-layer and enhancement factor bounded to 106. The factor correlated with the specific repeat Au-Ag unit is much significant than that the Au micro/nanorod array embedded position and thickness of Ag.
Base on the application study, the results of Raman spectra indicate that A/WSN/33(H1N1), A/England/12/64(H2N2), and A/Philippine/2/82(H3N2) through Au-Ag micro/nanorod array. In the Raman shift of 700-900 cm-1, it can be distinguished with each viral strain, i.e., Adenine ring (730 cm-1 for H3N2), Adenine (725 cm-1 for H2N2), and Tyrosine (854 cm-1 for H3N2 and 848 cm-1 for H1N1).
摘要 I
Abstract II
誌謝 III
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 表面拉曼散射增顯 3
1.3.2 奈米級金銀成份比例調整表面電漿子共振之應用 4
1.3.3 雷射光波長對表面拉曼散射增顯之影響 6
1.3.4 聚焦離子束於微奈米結構之製作 9
1.4 研究目的 10
第二章 理論基礎 11
2.1 拉曼光譜 11
2.1.1 振動光譜 11
2.1.2 拉曼散射理論 13
2.1.3 共振拉曼散射 17
2.2表面增顯拉曼散射光譜 18
2.2.1 表面電漿 19
2.2.2 電磁效應 21
2.2.3 化學效應 23
第三章 實驗材料與方法 24
3.1 實驗設計與流程 24
3.2 實驗材料與方法 24
3.2.1 基板清洗 24
3.2.2 以電子束蒸鍍機進行金銀薄膜製備 25
3.2.3 拉曼活性基板製作 25
3.2.4 分子探針溶液製備 26
3.2.5 流感病毒選用 27
3.2.6 拉曼檢測 28
3.2.7 訊號處理 29
3.3 製程儀器 29
3.3.1 電子束蒸鍍機 29
3.3.2 雙束型聚焦離子束 30
3.4 分析儀器 32
3.4.1 掃描式電子顯微鏡 32
3.4.2 穿透式電子顯微鏡 33
3.4.3 顯微拉曼光譜儀 34
第四章 結果與討論 36
4.1 金銀微奈米柱陣列基板之概念設計和製程驗證 36
4.1.1 金銀微奈米柱陣列基板之參數設計和命名規則 37
4.1.2 金銀微奈米柱陣列基板的表面形貌、微結構及成份之分析 39
4.2 顯微拉曼光譜分析 41
4.2.1 顯微拉曼光譜量測之正規化 41
4.2.2 增顯因子之評估 44
4.3 金銀微奈米柱陣列之表面增顯拉曼散射光譜之分析 46
4.3.1 表面金膜厚度於3層膜金銀微奈米柱對SERS之影響 48
4.3.2 內嵌銀膜厚度於3層膜金銀微奈米柱對SERS之影響 49
4.3.3 重複單位金銀厚度於多層膜金銀微奈米柱對SERS之影響 50
4.4 流感病毒株之表面增顯拉曼光譜分析 53
4.4.1 H1N1流感病毒株應用於表面增顯拉曼光譜分析 53
4.4.2 H2N2流感病毒株應用於表面增顯拉曼光譜分析 55
4.4.3 H3N2流感病毒株應用於表面增顯拉曼光譜分析 57
4.4.4 比較H1N1、H2N2、H3N2流感病毒株於表面增顯拉曼光譜 60
第五章 結論 63
第六章 未來展望 65
參考文獻 67
[1]L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney and M. J. Natan, Raman Spectroscopy, Analytical Chemistry, Vol. 70(12), 341-362, 1998.
[2]K. Katrin, K. Harald, I. Irving, R. D. Ramachandra and S. F. Michael, Surface-enhanced Raman scattering and biophysics, Journal of Physics: Condensed Matter, Vol. 14(18), R597, 2002.
[3]K. C. Schuster, E. Urlaub and J. R. Gapes, Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture, Journal of Microbiological Methods, Vol. 42(1), 29-38, 2000.
[4]M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt and J. Popp, Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions, The Analyst, Vol. 130(11), 1543-1550, 2005.
[5]A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chemical Society Reviews, Vol. 27, 241-250, 1998.
[6]S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, Vol. 275(5303), 1102-1106, 1997.
[7]J. Ferreira, M. J. L. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton and E. M. Girotto, Attomolar Protein Detection Using in-Hole Surface Plasmon Resonance, Journal of the American Chemical Society, Vol. 131(2), 436-437, 2008.
[8]K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari and M. S. Feld, Surface-Enhance Raman Spectroscopy in Single Lining Cells Using Gold Nanoparticles, Applied spectroscopy, Vol. 56, 150-154, 2002.
[9]L. Zeiri, B. V. Bronk, Y. Shabtai, J. Czégé and S. Efrima, Silver metal induced surface enhanced Raman of bacteria, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 208(1-3), 357-362, 2002.
[10]M. Lin, L. He, J. Awika, L. Yang, D. R. Ledoux, H. Li and A. Mustapha, Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC, Journal of Food Science, Vol. 73(8), T129-T134, 2008.
[11]S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy and R. A. Tripp, Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate, Nano Letters, Vol. 6(11), 2630-2636, 2006.
[12]C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian and D.-L. Kwong, DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label, Biosensors and Bioelectronics, Vol. 24(2), 216-221, 2008.
[13]R. A. Tripp, R. A. Dluhy and Y. Zhao, Novel nanostructures for SERS biosensing, Nano Today, Vol. 3(3-4), 31-37, 2007.
[14]B. Sepúlveda, P. C. Angelomé, L. M. Lechuga and L. M. Liz-Marzán, LSPR-based nanobiosensors, Nano Today, Vol. 4(3), 244-251, 2009.
[15]R. J. C. Brown and M. J. T. Milton, Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS), Journal of Raman Spectroscopy, Vol. 39(10), 1313-1326, 2008.
[16]K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch and J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics, Analytical and Bioanalytical Chemistry, Vol. 390(1), 113-124, 2008.
[17]M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers and R. G. Nuzzo, Nanostructured Plasmonic Sensors, Chemical Reviews, Vol. 108(2), 494-521, 2008.
[18]J. Henzie, J. E. Barton, C. L. Stender and T. W. Odom, Large-Area Nanoscale Patterning: Chemistry Meets Fabrication, Accounts of Chemical Research, Vol. 39(4), 249-257, 2006.
[19]T. Okamoto and I. Yamaguchi, Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique, The Journal of Physical Chemistry B, Vol. 107(38), 10321-10324, 2003.
[20]M. Moskovits, Surface-enhanced spectroscopy, Reviews of Modern Physics, Vol. 57(3), 783, 1985.
[21]Q. Ye, J. Fang and L. Sun, Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group, The Journal of Physical Chemistry B, Vol. 101(41), 8221-8224, 1997.
[22]A. Campion, J. E. Ivanecky, C. M. Child and M. Foster, On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering, Journal of the American Chemical Society, Vol. 117(47), 11807-11808, 2002.
[23]Y.-C. Liu and R. L. McCreery, Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces, Analytical Chemistry, Vol. 69(11), 2091-2097, 1997.
[24]J. R. Lombardi, R. L. Birke, T. Lu and J. Xu, Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg--Teller contributions, The Journal of Chemical Physics, Vol. 84(8), 4174-4180, 1986.
[25]J.-J. Feng, U. Gernert, M. Sezer, U. Kuhlmann, D. H. Murgida, C. David, M. Richter, A. Knorr, P. Hildebrandt and I. M. Weidinger, Novel Au-Ag Hybrid Device for Electrochemical SE(R)R Spectroscopy in a Wide Potential and Spectral Range, Nano Letters, Vol. 9(1), 298-303, 2008.
[26]S. Kim, S. K. Kim and S. Park, Bimetallic Gold-Silver Nanorods Produce Multiple Surface Plasmon Bands, Journal of the American Chemical Society, Vol. 131(24), 8380-8381, 2009.
[27]C.-T. Li, K.-C. Lo, H.-Y. Chang, H.-T. Wu, J. H. Ho and T.-J. Yen, Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity, Biosensors and Bioelectronics, Vol. 36(1), 192-198, 2012.
[28]R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla and O. N. Oliveira, Silver Nanowire Layer-by-Layer Films as Substrates for Surface-Enhanced Raman Scattering, Analytical Chemistry. Vol. 77(2), 378-382, 2004.
[29]C.-W. Chang, J.-D. Liao, Y.-Y. Lin and C.-C. Weng, Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect, Sensors and Actuators B: Chemical, Vol. 153(1), 271-276, 2011.
[30]J. R. Greer and W. D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Physical Review B, Vol. 73(24), 245410, 2006.
[31]J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza and F. F. Abraham, Size Effects on the Mechanical Behavior of Nanoporous Au, Nano Letters, Vol. 6(10), 2379-2382, 2006.
[32]X. Zhou, Q. Wei, K. Sun and L. Wang, Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition, Applied Physics Letters, Vol. 94(13), 133107-133103, 2009.
[33]M. R. Kagan and R. L. McCreery, Quantitative Surface Raman Spectroscopy of Physisorbed Monolayers on Glassy Carbon, Langmuir, Vol. 11(10), 4041-4047, 2002.
[34]P. A. Mosier-Boss, S. H. Lieberman and R. Newberry, Field Screening Methods Hazard. Wastes Toxic Chem, Proc. of Int. Symposium, Vol. 2, 1155-1162, 1995.
[35]Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo and R. Gordon, Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film, The Journal of Physical Chemistry C, Vol. 112(39), 15098-15101, 2008.
[36]汪建民主編,「材料分析」,中國材料科學學會,73-82,1998。
[37]謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期1卷,25,1985。
[38]E. Smith and G. Dent, Resonance Raman Scattering, Modern Raman Spectroscopy: A Practical Approach, 93, 2005.
[39]D. L. Jeanmaire and R. P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of Electroanalytical Chemistry, Vol. 84(1), 1-20, 1977.
[40]M. G. Albrecht and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, Vol. 99(15), 5215-5217, 1977.
[41]M. Moskovits, K. Kneipp and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, Springer, 2-40, 2006.
[42]吳民耀,劉威志,「表面強化拉曼散射」,物理雙月刊,2期4卷,486-495,2006。
[43]A. Otto, In Light scattering in solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects, Sptinger-Verlag, 289, 1984.
[44]M. Moskovits, K. Kneipp and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications Springer, 197-198, 2006.
[45]張信之,「病毒世界:現代分子病毒學大綱」,藝軒圖書出版社,第二章,84-87, 1996
[46]D.-G. Yu, W.-C. Lin, C.-H. Lin, L.-M. Chang and M.-C. Yang, An in situ reduction method for preparing silver/poly(vinyl alcohol)nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates, Materials Chemistry and Physics, Vol. 101, 93-98, 2007.
[47]C. J. Orendorff, A. Gole, T. K. Sau and C. J. Murphy, Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence, Analytical Chemistry, Vol. 77(10), 3261-3266, 2005.
[48]B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro and B. r. M. Reinhard, Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays, ACS Nano, Vol. 3(5), 1190-1202, 2009.
[49]Y.-Y. Lin, J.-D. Liao, Y.-H. Ju, C.-W. Chang and A.-L. Shiau, Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus, Nanotechnology, Vol. 22(18), 185308, 2011.
[50]E. van der Vries, F. F. Stelma and C. A. B. Boucher, Emergence of a Multidrug-Resistant Pandemic Influenza A (H1N1) Virus., New England Journal of Medicine, Vol. 363(14), 1381-1382, 2010.
[51]W.-T. Cheng, M.-T. Liu, H.-N. Liu and S.-Y. Lin, Micro-Raman Spectroscopy Used to Identify and Grade Human Skin Pilomatrixoma, Microscopy Research and Technique, Vol. 68, 75-79, 2005.
[52]H. Han, X. Yan, R. Dong, G. Ban and K. Li, Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS), Appl Phys B, Vol. 94, 667-672, 2009.
[53]D. K. Byarugaba, M. F. Ducatez, B. Erima, E. A. Mworozi, M. Millard, H. Kibuuka, L. Lukwago, J. Bwogi, B. B. Kaira, D. Mimbe, D. C. Schnabel, S. Krauss, D. Darnell, R. J. Webby, R. G. Webster and F. Wabwire-Mangen, Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Uganda,PLoS ONE, Vol. 6(11), e27803, 2011.
[54]I. Notingher, Raman Spectroscopy Cell-based Biosensors, Sensors, Vol. 7(8), 1343-1358, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊