跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱士益
研究生(外文):Shih-YiChiu
論文名稱:超臨界二氧化碳流體電鍍鎳基複合鍍層性質之研究
論文名稱(外文):Material Characteristics of Nickel-based Composite Coatings Electrodeposited in Supercritical CO2 Fluid
指導教授:蔡文達蔡文達引用關係
指導教授(外文):Wen-Ta Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:138
中文關鍵詞:電鍍鎳複合鍍層超臨界二氧化碳機械性質耐蝕性質
外文關鍵詞:electroplated nickelcomposite coatingssc-CO2mechanical propertiescorrosion resistance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試於超臨界二氧化碳流體中,以電鍍法製備鎳基複合鍍層,並探討複合鍍層中所添加的強化相種類、尺寸、濃度,以及幫助複合鍍層附著的分散劑之添加,對於複合鍍層性質的影響。在研究中所製備的複合鍍層,以掃描式電子顯微鏡觀察其表面形貌與橫截面形貌;以能量散射光譜儀來評估複合鍍層中強化相顆粒的含量;以X光繞射儀鑑定複合鍍層的晶體結構;複合鍍層的機械性質分為硬度與耐磨性,分別以微氏硬度儀與循環刮痕試驗儀來量測;最後以動電位極化曲線量測的方式,評估複合鍍層在中性的3.5 wt% NaCl與酸性的1 M HCl水溶液中的耐蝕性。
實驗結果顯示,在超臨界二氧化碳流體中,複合鍍層擁有較高含量的氧化鋁共沉積,且由於碳原子的固溶等因素,擁有比傳統製程製備之鍍層更小尺寸的晶粒。因此,結合細晶強化、散佈強化、固溶強化等效應,在超臨界二氧化碳中可以製備出硬度與耐磨性皆優於純鎳鍍層以及傳統鎳/氧化鋁鍍層的複合鍍層。於3.5 wt% NaCl水溶液中,鎳基複合鍍層會在陽極極化曲線呈現一鈍化區,可能與鎳氫氧化物的沉澱有關,在超臨界二氧化碳流體下製備的複合鍍層,擁有較寬的鈍化區。然而,氧化鋁的添加會造成與鎳基地之間的不連續面,可能成為間隙腐蝕的起始位置,因此複合鍍層呈現出的耐蝕性比純鎳鍍層差。在1 M HCl水溶液中,鎳基複合鍍層表現出的耐蝕性依然比純鎳稍差,整體腐蝕速率較在中性溶液中快速,在超臨界二氧化碳下製備的複合鍍層,由於晶體結構上的改變,因此比傳統複合鍍層更加耐蝕。
在比較不同顆粒種類複合鍍層性質的實驗當中,發現顆粒本身吸附的表面電荷會決定顆粒往陰極移動與共沉積的能力,以碳化矽而言,其在本研究所使用的電鍍浴中,表面電荷為負值,因此吸附能力較表面電荷為正值的氧化鋁差,且在超臨界二氧化碳流體中,較紊亂的鍍浴流動可能使較輕的碳化矽顆粒更不容易停留於表面,故其對於複合鍍層機械性質上的提升,並不如氧化鋁的顯著。但在乳化超臨界二氧化碳中製備的複合鍍層,有局部位置發生大量碳化矽沉積。研究中認為碳化矽顆粒在電化學測試時,與氧化鋁顆粒扮演的角色類似,因此鍍層中顆粒含量成為影響電化學性質的主因,傳統製程與未乳化超臨界二氧化碳下製備的鎳/碳化矽複合鍍層,其陽極電流密度皆低於相同條件下製備的鎳/氧化鋁複合鍍層。
有鑑於此,接下來的實驗將做為表面電荷改質用的分散劑CTAB加入電鍍浴中,並觀察其效果。依據界達電位(Zeta potential)量測結果,加入CTAB可以有效改變碳化矽表面電荷,使較多的碳化矽附著於複合鍍層之中,對於硬度值有明顯增強的效果。然而,在添加CTAB之後,分散劑中的陽離子會與鎳離子競爭電子,加上吸附於陰極的分子降低電流效率,造成鎳鍍層的厚度明顯的變薄,同時附著性也變的較差,在乳化超臨界二氧化碳中,由於FSN與CTAB的交互作用,附著性下降的特別明顯,在進行刮痕試驗時鍍層會發生剝落的現象。
在以不同尺寸大小氧化鋁進行顆粒大小對於複合鍍層性質的影響研究時,發現到無論是在傳統電鍍製程或是超臨界二氧化碳製程,顆粒大小對於晶體結構、耐蝕性都沒有顯著的影響。然而,本來應提供較佳散佈強化效果的小顆粒氧化鋁,容易因摩擦或沖刷等外力而脫落,因此在機械性質的表現上,比大顆粒的氧化鋁要稍微差一些。至於添加不同濃度氧化鋁於電鍍浴中的部分,1 μm的氧化鋁於電鍍浴中的濃度在到達10 g/L之後,複合鍍層中氧化鋁含量的提升就漸趨平緩,但隨著濃度上升,鍍層的厚度會逐漸的增厚。在晶體結構方面,濃度的改變並未對其造成明顯的影響,因此機械性質的強弱主要取決於氧化鋁含量的多寡,在濃度提升至10 g/L後各個複合鍍層強度皆較為接近。在耐蝕性的測試中,濃度的改變僅對於陽極電流密度有些許的影響,並沒有影響複合鍍層的耐蝕行為。

The Ni-based composite coatings could be successfully prepared in supercritical carbon dioxide fluid (sc-CO2). In the investigation, the influence of process, particle type, addition of dispersant, particle size, and particle concentration were discussed. For all deposits prepared, we used scanning electron microscope (SEM) to examine the surface and cross-section morphologies. The content of particles was evaluated by energy dispersive spectrometer (EDS). X-ray diffraction (XRD) was employed to analyze the crystal structure. As to the mechanical properties, the measurement of the hardness and the wear test wear taken. Finally, the electrochemical tests in 3.5 wt% NaCl and 1 M HCl solutions were hold to analyze the corrosion resistance of Ni-based composite coatings.
In the comparison between different processes, there were more Al2O3 particles in the Ni-Al2O3 composite films fabricated with sc-CO2. Furthermore, the sc-CO2 composite coatings had much finer grains. Owing to the effects of grain refinement, dispersion strengthening, and solid solution hardening, the Ni-Al2O3 deposits made from sc-CO2 showed higher hardness and wear resistance. Ni-based composite coatings formed a passive region in 3.5 wt% NaCl solution which was probably referred to the precipitation of nickel hydroxide, and dissolved quickly in 1 M HCl solution. Sc-CO2 composite coatings showed better corrosion resistance in both two kinds of solution. However, the de-coherent boundary between Al2O3 particles and Ni matrix would become active sites of crevice corrosion.
When we introduced different types of particles in the electrolyte, we found that the surface charge of particles played an important role in the adsorption of particles during the electroplating process. SiC particles formed negative charges around them rather than the positive charges of Al2O3. Moreover, the turbulent flow in the sc-CO2 system might have an influence on the adsorption of light SiC particles. In consequence SiC particles didn’t co-deposited successfully as Al2O3 did, hence the enhancement on the mechanical properties of Ni-SiC deposits was slightly weaker than Ni-Al2O3. As to the corrosion resistance, we believed that SiC particles played a similar role with Al2O3 particles, so the corrosion resistance of Ni-SiC films was a little bit worse than pure Ni coatings, otherwise, still better than Ni-Al2O3 films.
In order to modify the surface charge of SiC particles, we added CTAB into the electrolyte, which provided the positive surface charges for SiC particles, improved the adsorption and the hardness. However, the competition between CTA+ and Ni2+ ions on electrons caused the decrease on the thickness of composite coatings. The adsorption of CTA+ compound lead to the de-coherent between composite films and substrate, especially for the films made from emulsified sc-CO2, thus the protective ability was reduced.
The final parts were the effect of the particle size and concentration in the electrolyte. The Al2O3 particles could be co-deposited on the composite films in any size. No matter producing from conventional or sc-CO2 bath, the particle size didn’t make an obvious difference on the crystal structure and corrosion behavior. In our results, the small particle was easily to be moved away by the external force, and then left holes on the surface, which resulted in the slightly weaker strength than the films containing large particles. The content of particles in composite coatings increased with the raise of concentration of particles in the electrolyte and the tendency became smooth when the concentration came to 10 g/L. However, the thickness continuously increased with the concentration, but the hardness and the wear rate didn’t get any further obvious enhancement for the coatings. The crystal structure was not obviously affected by the concentration, and so was the corrosion behavior. Only the anodic current density showed a small difference.

中文摘要 Ⅰ
英文摘要 Ⅳ
誌謝 Ⅶ
總目錄 Ⅸ
表目錄 XIII
圖目錄 XV
第一章 引言 1
第二章 理論與文獻回顧 4
2-1 電鍍鎳沿革 4
2-1-1 表面處理技術 4
2-1-2 鎳基鍍層的崛起 4
2-1-3 電鍍鎳原理與發展 5
2-1-4 鍍層缺陷 7
2-2 複合鍍層發展與機制 8
2-2-1 複合鍍層簡介 8
2-2-2 複合鍍層共沉積機制 8
2-2-3 微小顆粒分散 10
2-3 材料強化機制 12
2-3-1 細晶強化 (Grain refinement hardening) 12
2-3-2 散佈強化 (Dispersion strengthening) 13
2-3-3 固溶強化 (Solid solution strengthening) 14
2-4 超臨界流體 14
2-4-1 超臨界二氧化碳簡介 14
2-4-2 乳化機制 15
2-4-3 超臨界二氧化碳於電鍍之應用 16
第三章 實驗步驟 27
3-1 試片製備 27
3-2 超臨界流體電鍍系統 27
3-2-1 電鍍設備 27
3-2-2 電鍍浴組成 28
3-2-3 電鍍流程 29
3-2-4 實驗架構 30
3-3 材料特性與性質分析 31
3-3-1 複合鍍層中之強化相顆粒含量與表面形貌 31
3-3-2 鍍浴中顆粒之表面電荷 31
3-3-3 複合鍍層之晶體結構 32
3-3-4 複合鍍層之機械性質 32
3-3-5 複合鍍層之耐蝕性質 33
第四章 結果與討論 41
4-1 於不同製程下製備複合鍍層 41
4-1-1 表面形貌之觀察及顆粒析鍍效率分析 41
4-1-2 晶體結構之鑑定 42
4-1-3 機械性質之量測 44
4-1-4 耐蝕行為之分析 46
4-2 不同種類的強化相顆粒對鎳基複合鍍層性質之影響 50
4-2-1 表面形貌之觀察及氧化鋁/碳化矽顆粒析鍍效率分析 50
4-2-2 晶體結構之鑑定 52
4-2-3 機械性質之量測 54
4-2-4 耐蝕行為之分析 55
4-3 分散劑的添加對鎳基複合鍍層之影響 57
4-3-1 表面形貌之觀察及碳化矽顆粒析鍍效率分析 57
4-3-2 晶體結構之鑑定 59
4-3-3 機械性質之量測 59
4-3-4 耐蝕行為之分析 60
4-4 強化相顆粒尺寸對鎳基複合鍍層性質之影響 62
4-4-1 表面形貌之觀察及氧化鋁顆粒析鍍效率分析 62
4-4-2 晶體結構之鑑定 63
4-4-3 機械性質之量測 63
4-4-4 耐蝕行為之分析 64
4-5 強化相添加濃度對鎳基複合鍍層性質之影響 66
4-5-1 表面形貌之觀察及氧化鋁顆粒析鍍效率分析 66
4-5-2 晶體結構之鑑定 67
4-5-3 機械性質之量測 67
4-5-4 耐蝕行為之分析 68
第五章 結論 130
參考文獻 132

[1] K. H. Hou, W. H. Hwu, S. T. Ke, M. D. Ger, “Ni–P–SiC composite produced by pulse and direct current plating, Materials Chemistry and Physics 100 (2006) 54–59.
[2] L. M. Chang, M. Z. An, H. F. Guo, S. Y. Shi, “Microstructure and properties of Ni–Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition, Applied Surface Science 253 (2006) 2132–2137.
[3] H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution, Chemistry Letters 11 (2002) 1086-1087.
[4] S. T. Chung, H. C. Huang, S. J. Pan, W. T. Tsai, P. Y. Lee, C. H. Yang, M. B. Wu, “Material characterization and corrosion performance of nickel electroplated in supercritical CO2 fluid, Corrosion Science 50 (2008) 2614–2619.
[5] H. Yoshida, M. Sone, A. Mizushima, H. Yan, H. Wakabayashi, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, “Application of emulsion of dense carbon dioxide in electroplating solution with nonionic surfactants for nickel electroplating, Surface and Coatings Technology 173 (2003) 285–292.
[6] 謝培煥(2000),「鎳-氧化鋁複合鍍電鍍行為對鍍層性質之影響」,國立成功大學化學工程學系碩士論文。
[7] G. H. Zhou, H. Y. Ding, F. Zhou, Y. Zhang, “Structure and Mechanical Properties of Ni-P-Nano Al2O3 Composite Coatings Synthesized by Electroless Plating, Journal of Iron and Steel Research International 15 (2008) 65-69.
[8] J. N. Balaraju, Kalavati, K.S. Rajam, “Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni–P–Al2O3 composite coatings, Surface & Coatings Technology 200 (2006) 3933 – 3941.
[9] S. T. Aruna, V. K. William Grips, K.S. Rajam, “Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties, Journal of Alloys and Compounds 468 (2009) 546–552.
[10] S. Alirezaei, S. M. Monirvaghefi, M. Salehi, A. Saatchi, “Wear behavior of Ni–P and Ni–P–Al2O3 electroless coatings, Wear 262 (2007) 978–985
[11] M. R. Vaezi, S. K. Sadrnezhaad, L. Nikzad, “Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics, Colloids and Surfaces A: Physicochem. Eng. Aspects 315 (2008) 176–182.
[12] J. Alexis, B. Etcheverry, J. D. Beguin, J. P. Bonino, “Structure, morphology and mechanical properties of electrodeposited composite coatings Ni–P/SiC, Materials Chemistry and Physics 120 (2010) 244–250.
[13] D. K. Singh, V. B. Singh, “Electrodeposition of Ni–SiC Composite from a Non-Aqueous Bath, Journal of the Electrochemical Society 158 (2) (2011) D114-D118.
[14] S. R. Allahkaram, M. H. Nazari, S. Mamaghani, A. Zarebidaki, “Characterization and corrosion behavior of electroless Ni–P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid, Materials and Design 32 (2011) 750–755.
[15] A. Sohrabi, A. Dolati, M. Ghorbani, A. Monfared, P. Stroeve, “Nanomechanical properties of functionally graded composite coatings: Electrodeposited nickel dispersions containing silicon micro- and nanoparticles, Materials Chemistry and Physics 121 (2010) 497–505.
[16] F. Hou, W. Wang, H. Guo, “Effect of the dispersibility of ZrO2 nanoparticles in Ni–ZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings, Applied Surface Science 252 (2006) 3812–3817.
[17] W Wang, F. Y. Hou, H. Wang, H T. Guo, “Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition, Scripta Materialia 53 (2005) 613–618.
[18] G. A. Chiganova, L. E. Mordvinova, “Effect of Nanodiamond Modification on the Characteristics of Diamond_Containing Nickel Coatings, Inorganic Materials 47 (7) (2011) 717–721.
[19] H. Xu, Z. Yang, M. K. Li, Y. L. Shi, Y. Huang, H. L. Li, “Synthesis and properties of electroless Ni–P–Nanometer Diamond composite coatings, Surface & Coatings Technology 191 (2005) 161– 165.
[20] 鍾松廷(2011),「於含有超臨界二氧化碳流體之電解液中以電鍍法製備鎳基複合鍍層及材料特性研究」,國立成功大學材料科學及工程學系博士論文。
[21] H. Uchiyama, M. Sone, C. Ishiyama, T. Endo, T. Hatsuzawa, Y. Higo, “Uniform Ni–P Film Using an Electroless Plating Method with an Emulsion of Supercritical Carbon Dioxide, Journal of The Electrochemical Society, 154 (7) (2007) E91-E94.
[22] B. H. Woo, M. Sone, A. Shibata, C. Ishiyama, S. Edo, M. Tokita, J. Watanabe, Y. Higo, “Impregnation of Ni–P metal into polymer substrate via catalyzation in Sc-CO2 and electroless plating in Sc-CO2 emulsion, Surface & Coatings Technology 204 (2010) 1785–1792.
[23] J. Shore, British Patent 8407 (1840)
[24] J. K. Dennis, T. E. Such, “Nickel and chromium plating, 3rd edition, Published by Woodhead Publishing Ltd (1993), England.
[25] Lawrence J. Durney, “Electroplating engineering handbook, Published by Chapman & Hall (1996), England.
[26] O.P. Watts, Trans. Am. Electrochem. Soc. 29 (1916) 395.
[27] R. G. Ehl, A. J. Ihde, “Faraday’s electrochemical laws and the determination of equivalent weights, Journal of Chemical Education, 31 (5) (1954) 226
[28] Z. Abdel Hamid, S.A. El Badry, A. Abdel Aal, “Electroless deposition and characterization of Ni–P–WC composite alloys, Surface & Coatings Technology 201 (2007) 5948–5953.
[29] Y. Wang, Z. Xu, “Nanostructured Ni–WC–Co composite coatings fabricated by electrophoretic deposition, Surface & Coatings Technology 200 (2006) 3896 – 3902.
[30] Y. Wu, L. Liu, B. Shen, W. Hu, “Study of self-lubricant Ni-P-PTFE-SiC composite coating, Journal of Materials Science Letters (2005)
[31] T. Y. Chao, G. R. Shen, Y. T. Cheng, “Comparative Study of Ni–P–Diamond and Ni–P–CNT Nanocomposite Films, Journal of The Electrochemical Society, 153 (1) (2006) G98-G104
[32] N. Guglielmi, J. Electrochem. Soc. 119 (1972) 1009.
[33] J. P. Celis, J. R. Roos, C. Buelenss, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix, Journal of the Electrochemical Society 134 (1987) 1402.
[34] G. Maurin, A. Lavanant, “Electrodeposition of Nickel/Silicon Carbide Composite Coatings on a Rotating Disc Electrode, Journal of Applied Electrochemistry 25 (12) (1995) 1113.
[35] I. Garcia, J. Fransaer, J. P. Celis, “ Electrodeposition and Sliding Wear Resistance of Nickel Composite Coatings Containing Micron and Submicron SiC particles, Surface and Coatings Technology, 148 (2-3) (2001) 171.
[36] L. Benea, P. L. Bonora, A. Borello, S. Martelli, “ Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating, Wear 249 (2001) 995.
[37] 陳仁英,「新一代奈米粉體分散研磨及界面改質之技術與應用」,工業材料,251 (2007) 164-173。
[38] R. L. Fleischer, “The Strengthening of Metals, ed. D. Peckner, Reinhold, New York (1964) 93.
[39] J. Lian, B. Baudelet, A. A. Nazarov, “Model for the prediction of the mechanical behaviour of nanocrystalline materials, Materials Science and Engineering A172 (1993) 23.
[40] R. C. Reid, J. M. P., B. E. Poling, “The Properties of Gases and Liquids, New York: McGraw-Hill, 1986.
[41] J. A. Darr, M. P., “New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids, Chemical Reviews 99 (1999) 495.
[42] H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Ichihara, S. Miyata, “Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant, Surface & Coatings Technology 187 (2004) 86– 92.
[43] H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X. T. Tao, A. Mizushima, S. Ichihara, S. Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Thin Solid Films 446 (2004) 194–199.
[44] H. Yan, M. Sone, N. Sato, S. Ichihara, S. Miyata, “The effects of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution, Surface and Coatings Technology 182 (2004) 329–334
[45] A. Mizushima, M. Sone, H. Yana, T. Nagaib, K. Shigeharaa, S. Ichiharaa, S. Miyata, “Nanograin deposition via an electroplating reaction in an emulsion of dense carbon dioxide in a nickel electroplating solution using nonionic fluorinated surfactant, Surface & Coatings Technology 194 (2005) 149– 156.
[46] H. Wakabayashi, N. Sato, M. Sone, Y. Takada, H. Yan, K. Abe, K. Mizumoto, S. Ichihara, S. Miyata, “Nano-grain structure of nickel films prepared by emulsion plating using dense carbon dioxide, Surface & Coatings Technology 190 (2005) 200– 205.
[47] Md. Ziaur Rahman, M. Sone, M. Eguchi, K. Ikeda, S. Miyata, T. Yamamoto, “Wear properties of nickel coating film plated from emulsion with dense carbon dioxide, Surface & Coatings Technology 201 (2006) 606–611.
[48] K. M. Hong, M. S. Kim, J. G. Chung, “Characteristics of a Nickel Film Electroplated on a Copper Substrate in Supercritical CO2, J. Ind. Eng. Chem. 10-4 (2004) 683-689.
[49] M. S. Kim, C. K. Kim, “Nickel Electroplating on Copper Substrate in Plating Solution Containing High-Density CO2, J. Ind. Eng. Chem. 11-6 (2005) 876-882.
[50] M. S. Kim, J. Y. Kim, C. K. Kim, N. K. Kim, “ Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2, Chemosphere 58 (2005) 459–465.
[51] S. T. Chung, W. T. Tsai, “Effect of pressure on the electrodeposition of nanocrystalline Ni–C in supercritical CO2 fluid, Thin Solid Films 518 (2010) 7236–7239.
[52] T. Borkar, S. P. Harimkar, “Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings, Surface & Coatings Technology 205 (2011) 4124–4134.
[53] M. Srivastava, V.K. William Grips, K.S. Rajam, “Influence of SiC, Si3N4 and Al2O3 particles on the structure and properties of electrodeposited Ni, Materials Letters 62 (2008) 3487–3489.
[54] ASM Handbook Committee (2002). ASM Handbook. Friction, Lubrication and Wear Technology. U.S.A., ASM International. Volume 18.
[55] G. Levy, R.G. Lingford, L.A. Mitchell, “Wear behaviour and mechanical properties: the similarity of seemingly unrelated approaches, Wear 21 (1972) 167–177.
[56] M. Shafiei, A.T. Alpas, “Effect of sliding speed on friction and wear behaviour of nanocrystalline nickel tested in an argon atmosphere, Wear 265 (2008) 429–438.
[57] C.S. Ramesh, S.K. Seshadri, “Tribological characteristics of nickel based composite coatings, Wear 255 (2003) 893–902.
[58] L. Chen, L. Wang, Z. Zeng, T. Xu, “Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings, Surface & Coatings Technology 201 (2006) 599–605
[59]柯賢文,「腐蝕及其防制」,全華圖書(2008)
[60] T. P. Hoar, J. M. West, “Mechano-Chemical Anodic Dissolution, Nature 181 (35) (1958).
[61] B. Szczygieł, M. Kołodziej, “Composite Ni/Al2O3 coatings and their corrosion resistance, Electrochimica Acta 50 (2005) 4188–4195.
[62] A. C. Ciubotariu, L. Benea, M. Lakatos–Varsanyi, V. Dragan, “Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3–Ni nano composite coatings, Electrochimica Acta 53 (2008) 4557–4563.
[63] Q. Feng, T. Li, H. Teng, X. Zhang, Y. Zhang, C. Liu., J. Jin, “Investigation on the corrosion and oxidation resistance of Ni–Al2O3 nano-composite coatings prepared by sediment co-deposition, Surface & Coatings Technology 202 (2008) 4137–4144
[64] P. Berçot, E. Peña-Muñoz, J. Pagetti, “Electrolytic composite Ni–PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation, Surface and Coatings Technology 157 (2002) 282–289.
[65] 高濂、孫靜、劉陽橋,「奈米粉體的分散及表面改性」,五南出版社 (2005)
[66] 陳正德(1992),「碳化矽的電泳沈積現象探討」,國立中央大學機械工程學系碩士論文。
[67] A. Turnbull, Br. Corr. J. 27 (1) (1992) 27-35.
[68] K.H. Hou, M.D. Ger, L.M. Wang, S.T. Ke, “The wear behaviour of electro-codeposited Ni–SiC composites, Wear 253 (2002) 994–1003.
[69] G. Maurin, A. Lavanant, “Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode, J. Appl. Electrochem. 25 (1995) 1113–1121.
[70] W. Liu, X. M. Li, H. T. Zheng, Y. Liu, “Effects of Physico-chemical Factors on Complexation of Cetyltrimethyl Ammol/Lonium Bromide with Whey Protein, Food Science (China) 31 (21) (2010) 24-28.
[71] E. Rudnik, L. Burzyñska, Ł. Dolasiñski, M. Misiak, “Electrodeposition of nickel/SiC composites in the presence of cetyltrimethylammonium bromide, Applied Surface Science 256 (2010) 7414–7420.
[72] C.T.J. Low, R.G.A. Wills, F.C. Walsh, “Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surface & Coatings Technology 201 (2006) 371–383.
[73] 劉宏義、黃議興、陳淑華、林文豪、張六文,「介在物對冷軋鋼片斷面銹蝕之影響研究」,防蝕工程,Vol.13 No.1 (1999) 43-54.
[74] R. Ke, R. Alkire, “Initiation of Corrosion Pits at Inclusions on 304 Stainless Steel, J. Electrochem. Soc., 142, 12 (1995) 4056.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top