跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭奕達
研究生(外文):Yi-DaHsiao
論文名稱:應變速率對不同回銲次數之Sn-9Zn/Cu拉伸破壞性質的影響
論文名稱(外文):Effects of Strain Rate on Tensile Fracture Characteristics of Multi-Reflowed Sn-9Zn/Cu
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenLi-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:52
中文關鍵詞:共晶錫鋅銲錫與銅之接合材料應變速率拉伸破壞
外文關鍵詞:Eutectic Sn-ZnSolder/Cu jointstrain ratetensile properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在電子封裝中,銲錫常應用於連接電子零件。銲錫與基材回銲形成接合材料後,當其受外力,接合材料之微觀組織差異及所受形變之速率可能改變拉伸破壞特性。本實驗為應變速率 (6.4 × 10^-1、1.6 × 10^-2、1.6 × 10^-3 sec^-1)對不同回銲次數 (1、3和5次回銲)之Sn-9Zn/Cu拉伸破壞特性之影響。此外亦觀察其微觀組織對拉伸破壞之影響。
實驗結果顯示,Sn-9Zn合金為粗大之針棒狀的初晶Zn和Sn-Zn共晶相所組成。當Sn-9Zn合金與Cu回銲 (Reflow)接合,銲錫與Cu之界面發生劇烈反應而生成介金屬化合物 (Intermetallic compound, IMC),其中界面靠近Cu端之主要生成IMC為γ-Cu5Zn8;靠近銲錫端為ε-CuZn5。當回銲次數增加,γ-Cu5Zn8厚度逐漸增加,但接合材料之銲錫內部中Zn含量減少,而影響ε-CuZn5成長,造成在第五次回銲時ε-CuZn5之長軸縮小。
由拉伸測試可知,在低應變速率 (1.6 × 10^-3 sec-1)下,由於接合材料之界面處之附著力大於銲錫強度,拉伸破斷位置皆發生在銲錫內部;而破斷面下呈現韌窩組織。在高應變速率 (6.4 × 10^-1和1.6 × 10^-2 sec-1)下,銲錫之強度隨著應變速率上升而上升,造成接合材料之銲錫的強度大於界面之附著力,使破壞容易發生在界面處之IMC。其中接合材料在第一和三次回銲時,破斷位置發生在界面處之銲錫和ε-CuZn5,但第三次回銲時ε-CuZn5之長軸較長,拉伸時ε-CuZn5容易產生裂痕;且裂痕也較易發生串聯,以致破壞強度略為下降,破斷面下裸露之ε-CuZn5面積率增加。而接合材料在第五次回銲時,界面反應增加,由於γ-Cu5Zn8與銲錫之CTE差異大,使γ-Cu5Zn8厚度上升容易產生孔洞;此外界面處之IMC佔平行部的面積率上升,接合材料之脆性特徵較明顯,使拉伸破壞位置發生在γ-Cu5Zn8。

Solders in electronic packages are often applied for connecting electronic device. When solder joints are applied by external force, the microstructure and speed of deformation change the tensile fracture characteristics. In the study, effect of strain rate (6.4 × 10^-1、1.6 × 10^-2、1.6 × 10^-3 sec-1) on tensile fracture characteristics of multi-reflow Sn-9Zn/Cu joints is investigated. Besides, effect of the microstructure on tensile fracture is also observed.
The results show that Sn-9Zn alloy is composed of needlelike primary Zn and eutectic phases. As the solders are reflowed between the Cu, the interfaces between them seriously react, and the IMCs (Intermetallic compound) are formed in interface zone. The IMCs are γ-Cu5Zn8 near the Cu, and the IMCs are ε-CuZn5 which is close to the solders. When the reflow times are on the increase, the width of γ-Cu5Zn8 gradually increases. However, because the content of Zn is lack in the solder of joints, the major axis of ε-CuZn5 decreases at 5 times of reflow.
According to the tensile test, at low strain rate (1.6 × 10^-3 sec-1), the adhesive strengths of interface is higher than the strengths of the solders of joints, so the fracture occurs in the solder zone. The tensile fracture surfaces show the dimple feature. At high strain rate (6.4 × 10^-1 and 1.6 × 10^-2 sec-1), due to the strength of solder increasing with strain rate, the strength of the solders is higher than the adhesive strength of interface, so the fracture of joints is at the IMC or solders which are close to the interface. At the 1 and 3 times of reflow, the fractures are at the interface of ε-CuZn5 and solders. Nevertheless, the major axis of ε-CuZn5 at the 3 times of reflow is longer than the other times of reflow. It easily produces cracks and cracks likely connect. Consequently, the bonding strength slightly deceases and the content of ε-CuZn5 in the tensile fracture surface is increase. At the 5 times of reflow, the reactions of interface elevate. The micro-holes are easily produced in the large width of γ-Cu5Zn8 since the mismatch of thermal expansion between IMCs and solders promotes. Moreover, the content of IMC at the interface in gage length is raised, so the brittle characteristics of solder joints are obvious. The fracture occurs in the γ-Cu5Zn8.
中文摘要 .............................................. I
英文摘要 .............................................. II
致謝................................................... IV
總目錄 ................................................ V
表目錄 ................................................ VII
圖目錄 ................................................ VIII
第一章 前言 ........................................... 1
第二章 文獻回顧 ....................................... 2
2-1 銲錫應用於電子封裝(Electronic Package) ............ 2
2-2 銲錫合金無鉛化趨勢 ................................ 2
2-3 Sn-Zn 合金 ........................................ 2
2-4 銲錫與銅接合之微觀組織 ............................ 3
2-5 接合材料之破壞強度與破壞特性 ...................... 4
第三章 實驗方法 ....................................... 10
3-1 試片製作 .......................................... 10
3-1-1 合金融煉配製 .................................... 10
3-1-2 合金試片製作 .................................... 10
3-1-3 接合材料試片製作 ................................ 10
3-2 實驗分析與測試 .................................... 11
3-2-1 試片組織觀察 .................................... 11
3-2-2 微硬度測試 ...................................... 11
3-2-3 合金拉伸測試 .................................... 12
3-2-4 接合材料拉伸測試 ................................ 12
第四章 實驗結果 ....................................... 18
4-1 微觀組織與微硬度分析 .............................. 18
4-1-1 微觀組織 ........................................ 18
4-1-2 Sn-9Zn/Cu 接合試片硬度測試 ...................... 18
4-2 Sn-9Zn 合金拉伸試驗 ............................... 19
4-3 Sn-9Zn/Cu 接合材料拉伸試驗 ........................ 19
第五章 討論 ........................................... 39
5-1 應變速率對銲錫合金和接合材料 (R1)之影響 ........... 39
5-2 回銲次數對拉伸破斷特性之影響 ...................... 40
第六章 結論 ........................................... 48
參考文獻 .............................................. 49
1.J.H. Lau, “Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies, New York: McGraw-Hill, pp.95–119, 2000.
2.D.R. Frear, P.T. Vianco, “Intermetallic Growth Behavior of Low and High Melting Temperature Solder Alloys, Metallurgical and Materials Transactions, 25A, pp.1509-1523, 1994.
3.K. Suganuma, T. Murata, N. Noguchi, Y. Toyoda, “Heat Resistance of Sn-9Zn Solder/Cu Interface with or without Coating, Journal of Materials Research, vol.15, pp.884-891, 2000.
4.M. Abtew, G. Selvaduray, “Lead-Free Solders in Microelectronics , Materials Science and Engineering, vol.R27, pp.95-141, 2000.
5.C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, “Properties of Lead-Free Solder Alloys with Rare Earth Element Additions, Materials Science and Engineering, vol.44R, pp.1-44, 2004.
6.M.E. Loomans, S. Vaynman, G. Ghosh, M.E. Fine, “Investigation of Multi-Component Lead-Free Solders, Journal of Electronic Materials, vol.23, pp.741-746, 1994.
7.C.W. Huang, K.L. Lin, “Wetting Properties of and Interfacial Reactions in Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au Layer, Materials Transactions, vol.45, pp.588-594, 2004.
8.黃頌閔,「不同迴銲條件之Sn-Ag-Cu無鉛錫球接合推剪阻抗之韋伯分析」,國立成功大學材料科學及工程學系,碩士論文,民國九十五年。
9.A. Irose, H. Yanagawa, E. Ide, K. F. Kobayashi, “Joint Strength and Interfacial Microstructure between Sn-Ag-Cu and Sn-Zn-Bi Solders and Cu Cubstrate, Science and Technology of Advanced Materials, vol.5, pp.267-276, 2004.
10.M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-Free Solders, Materials Transactions, vol.43, pp.1802-1807, 2002.
11.R. Mayappan, A.B. Ismail, Z.A. Ahmad, T. Arigab, L.B. Hussaina, “The Effect of Crosshead Speed on The Joint Strength between Sn-Zn-Bi Lead-Free Solders and Cu Substrate, Journal of Alloys and Compounds, vol.436, pp.112-117, 2007.
12.K. Suganumaa, K. Niihara, “Wetting and Interface Microstructure Between Sn-Zn Binary Alloys and Cu, Journal of Materials Research, vol.13, pp.2859-2865, 1998.
13.張黎,冼爱平,王中光,韓恩厚,尚建庫,「應變速率對Sn-9Zn共晶合金拉伸性能的影響」,金屬學報,第11期,1151-1154頁,民國93年。
14.M.. R. Pinnel, W. H. Knausenberger, “Interconnection System Requirements and Modeling, AT&T Tech. Journal, vol.66, pp.45-56, 1998.
15.R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles, International Thomson Publishing, New York, pp.848-860, 1992.
16.P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders, Journal of the Minerals, metals, and Materials Society, vol.45, pp.14-19, 1993.
17.K. Suganuma, “Advances in Lead-free Electronics Soldering, Current Opinion in Solid State and Materials Science, vol.5, pp.55-64, 2001.
18.H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders, Journal of Electronic Materials, vol.26, pp.783-790, 1997.
19.M. Abtew, G. Selvaduray, “ Lead-Free Solders in Microeclectronics, Materials Science and Engineering, vol.27, pp.95-141, 2000.
20.H.T. Lee, M.H. Chen, H.M. Jao and T.L. Liao, “Influence of Interfacial Intermetallic Compound on Fracture Behavior of Solder Joints, Materials Science and Engineering, vol.A358, pp.134-141, 2003.
21.C. Chou, S. Chen, Y. Chang, “Interfacial Reactions in The Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni Couples, Journal of Materials Research, vol.21, pp.1849-1856, 2006.
22.ASM Metals Handbook Volume 3 “Alloy Phase Diagram, pp.730-782, 1992.
23.陳秉暉,「Ga 和Ge 的添加對Sn-9Zn 無鉛銲錫合金抗氧化和拉伸性質之影響」,國立成功大學材料科學及工程學系,碩士論文,民國九十六年。
24.JIS Z 3198-5, “Test Methods for Lead-Free Solders Part 5: Methods for Tensile Tests and Shear Tests on Solder Joints, pp.1-12, 2003.
25.E. P. Wood, K. L. Nimmo, “In Search of New Lead-Free Electronic Solders, Journal of Electronic Materials, vol.23, pp.709-713, 1994.
26.S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari, K. Matsushige, “ Strength of Bonding Interface in Lead-Free Sn Alloy Solders, Materials Science and Engineering, vol.A319-321, pp.475-479, 2001.
27.B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys, Welding Res., Oct., pp.330-340, 1976.
28.莊強名,「無鉛化共晶銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90 年。
29.宣騰竣,「錫-鋅-銀-鋁-鎵銲錫合金之微結構與拉伸性質之研究」,國立成功大學材料科學及工程學系,博士論文,民國98年。
30.曾信傑,「電子構裝用無鉛銲錫之低週疲勞行為研究」,國立中央大學機械工程系,碩士論文,民國92年。
31.游季格,「Sn-9Zn-xCu無鉛銲錫合金通電前後之振動破壞阻抗研究」,國立成功大學材料科學及工程學系,碩士論文,民國93年。
32.I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki, Tensile Properties of Sn–Ag Based Lead-Free Solders and Strain Rate Sensitivity, Materials Science and Engineering A, vol.366, pp.50-55, 2004.
33.L. Zhang, A.P. Xian, Z.G. Wang, E.H. Han, and J.K. Shang, Effect of Strain Rate on the Tensile Properties of Sn-9Zn Eutectic Alloy, ACTA Metallurgica Sinica, Vol.40, pp.1151-1154, 2004.
34.K.H. Prakash, T. Sritharan, “Tensile fracture of tin–lead solder joints in copper, Materials Science and Engineering, vol.A379, pp.277–285, 2004.
35.陳曉薇,「溫度與應變速率對Sn-Ag基底銲點結合強度影響之研究」,國立成功大學機械工程學系,碩士論文,民國98年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊