跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘誌煌
研究生(外文):Chih-HuangPan
論文名稱:以電化學沉積法製備氧化亞銅/氧化鋅之p-n型異質接合奈米線
論文名稱(外文):Fabrication of p-Cu2O/n-ZnO Heterojunction Nanorod by Electrodeposition
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:52
中文關鍵詞:氧化鋅多孔氧化鋁膜板氧化亞銅異質接合奈米線
外文關鍵詞:ZnOporous alumina membraneCu2Oheterojunction nanorod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
在此研究中,我們利用兩次電化學沉積法在陽極氧化鋁膜板中沉積氧化亞銅與氧化鋅之殼層異質接合奈米線。為了避免累積的氫氣妨礙電化學沉積,我們選擇利用孔洞大小介於100~140 nm的氧化鋁作為輔助模板。第一次沉積為控制電流密度下沉積金屬銅奈米線,利用XRD圖譜分析確定在每平方公分5毫安培之電流密度的沉積條件下有金屬銅在氧化鋁膜板中沉積。經由TEM的分析發現,隨著沉積電流密度的增加,其金屬銅之結晶性也有提升。當電流密度提高至20mA/cm2時,可在氧化鋁膜板中形成單晶之金屬銅奈米線。
進行第二次沉積前,我們利用氫氧化納移除部分氧化鋁膜板,以增加電極與電解質的接觸面積。第二次沉積是利用銅奈米線作為電極沉積金屬鋅,形成銅/鋅之複合奈米線。
最後,我們進行400 oC之退火處理將銅/鋅之複合奈米線氧化,形成氧化亞銅/氧化鋅之異質接合奈米線。氧化亞銅/氧化鋅之異質接合奈米線之平均長度約為7 um,而其直徑約為140 nm。
In this research, we used two-step electrochemical deposition to synthesize the Cu2O/ZnO core-shell heterojunction nanorod in the porous alumina membrane. We used the porous alumina membrane with pore sizes in the range from 100 to 140 nm as the template in order to avoid the hydrogen accumulated, which will prejudiced the electrochemical deposition. The first deposition was controlled the current density of deposition to deposit the copper metal nanowire, and when the deposition conditions of the current density was 5mA/cm2, the copper were deposited in the porous alumina membrane which determined from X-ray diffraction (XRD) patterns. By the TEM analysis, we found the crystalline of copper will improved with increasing the current density of deposition. When the current density was increased to 20mA/cm2, the single crystal copper nanowires were synthesized in the porous alumina membrane.
Before the second deposition, we used the NaOH to remove the alumina template, in order to increase the contact area of the electrode and electrolyte. The second deposition used the copper nanowire as the electrode to deposit the zinc, the formation of Cu / Zn heterojunction nanowires.
Finally, we annealed the Cu/Zn heterojunction nanowires at 400 oC to syn-thesize the Cu2O/ZnO heterojunction nanowires.The average length and average of the Cu2O-ZnO heterojunction nanowire were 7 um and 140 nm.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VI
第一章 前言 1
第二章 理論說明與文獻回顧 2
2-1 一維奈米材料之製備 2
2-2 電化學基本理論[24] 3
2-3 氧化亞銅 6
2-3.1 氧化亞銅(Cu2O)的應用 8
2-3.2 氧化亞銅(Cu2O)文獻回顧 9
2-3.3 電化學法製備氧化亞銅(Cu2O) 10
2-4 氧化鋅(ZnO) 12
2-4.1 電化學法製備氧化鋅(ZnO) 14
2-5 陽極氧化鋁薄膜(AAO) 15
2-6 半導體理論 18
2-6.1 p-n半導體接合基本理論 19
2-7 研究動機 21
第三章 實驗步驟與分析儀器 22
3-1 電化學沉積氧化亞銅/氧化鋅奈米線 22
3-1.1 實驗流程 22
3-1.2 陽極氧化鋁模板(AAO)製備 24
3-1.3 電化學沉積銅/鋅複合奈米線 25
3-1.4 氧化亞銅/氧化鋅鋅複合奈米線合成 25
3-2 實驗藥品及設備 26
3-2.1 實驗設備 26
3-2.2 實驗藥品 26
3-3 微結構、成份及表面分析 27
3-3.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 27
3-3.2 X光繞射儀(X-ray diffractometer, XRD) 27
3-3.3 高解析穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM) 29
第四章 結果與討論 30
4-1 陽極氧化鋁模板 30
4-1.1 以40、80V陽極氧化處理製備氧化鋁模板 30
4-2 電化學法沉積金屬銅之一維奈米線 32
4-2.1 銅奈米線之X-ray 繞射分析 32
4-2.2 銅奈米線之表面形貌 34
4-2.3 銅奈米線之微結構分析 36
4-2.4 單晶銅奈米線之成長機制 38
4-3 合成氧化亞銅銅/氧化鋅之異質接合奈米線 40
4-3.1 氧化亞銅/氧化鋅之異質接合奈米線之X-ray分析 40
4-3.2 銅/鋅之異質接合奈米線之微結構分析 42
4-3.3 氧化亞銅/氧化鋅之異質接合奈米線之微結構分析 45
第五章 總結 46
參考文獻 47
[1] F. Qian, Y. Li, S. Gradeak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, C. M. Lieber, Nat. Mater. , 7, 701 (2008)
[2] J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, accept in J. Mater. Chem. (2011)
[3] Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, and Y. W. Dong, Superlattices and Microstructure, 50, 549 (2011)
[4] Y. C. Kong, D. P. Yu, Applied Physics Letters, 78, 407 (2001).
[5] Y. J. Zhang, Q. Zhang, Y. B. Li, N. L. Wang, J. Zhu, Solid State Communications, 115, 51 (2000).
[6] A. A. Setlur, J. M. Lauerhaas, Applied Physics Letters, 345 (1996).
[7] A. Z. Jin, Y. G. Wang, Z. Zhang, Journal of Crystal Growth, 252, 167 (2003).
[8] P. Aranda, J. M. Garcıa, Journal of Magnetism and Magnetic Materials, 249, 214 (2002)
[9] A. Fert, L. Piraux, Journal of Magnetism and Magnetic Materials, 200, 338 (1999).
[10] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Solid-State Electronics, 43, 1143 (1999).
[11] Y. Zhou, J. Huang, C. Shen, H. Li, Materials Science and Engineering, 335, 260 (2002).
[12] M. S. Gudiksen, J. Lincoln, Nature, 415, 617 (2002).
[13] X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, L. D. Zhang, Physica, 23, 75 (2004).
[14] X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Communications, 130, 429 (2004).
[15] L. Li, Y. Zhang, G. Li, L. Zhang, Chemical Physics Letters, 378, 244 (2003).
[16] Y. Zhou, C. Shen, H. Li, 146, 81 (2002).
[17] Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, C. L. Bai, Chem. Mater., 15, 664 (2003).
[18] C. G. Jin, W. F. Liu, C. Jia, X. Q. Xiang, W. L. Cai, L. Z. Yao, X. G. Li, 258, 337 (2003).
[19] A. K. M. Bantu, J. Rivas, G. Zaragoza, M. A. Lopez-Quintela, M. C. Blanco, Journal of Non-Crystalline Solids, 287, 5 (2001).
[20] D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, H. L. Li, Chemical Physics Letters, 358, 484 (2002).
[21] G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, Y. W. Du, Solid State Communications, 130, 541 (2004).
[22] K. Miyazaki, S. Kainuma, K. Hisatake, T. Watanabe, N. Fukumuro, Electrochemical Acta, 44, 3713 (1999).
[23] Y. K. Su, D. H. Qin, H. L. Zhang, H. Li, H. L. Li, Chemical Physics Letters, 388, 406 (2004).
[24]A. J. Bard, L. R. Faulk, Electrochemical method, Wiley, New York, 21(1980)
[25] R. W. G. Wyckoff, Crystal Structure, Wiley, New York, (1965)
[26] J. M. Zuo, M. O’ Keeffe, J. C. H. Spence, Nature, 401, 49 (1999).
[27] H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, Solar Energy Materials, 4, 291 (1981)
[28] G. K. Paul, Y. Kawa, H. Sato, T. Sakurai, and K. Akimoto, Appl. Phys. Leet., 88, 141901 (2006)
[29] L. Kleinman, K. Mednick, Physical Review B, 21, 1549 (1980)
[30] K. Johnsen, G. M. Kavoulakis, Physical Review Letters, 86, 858 (2001)
[31] Chen Z Z, Shi EW, Zheng Y Q, Li W J, Xiao B, Zhuang J Y, Journal of Crystal Growth, 249, 294 (2003)
[32] C. A. N. Fernando, L. A. A. De. Silva, R. M. Mehra, K. Takahashi, Semiconductor Science and Technology, 16, 433 (2001)
[33] K. H. Yoon, W. J. Choi, D. H. Kang, Thin Solid Films, 372, 205 (2000)
[34] T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran, M. J. Chockalingam, Journal of Crystal Growth, 216, 304 (2000)
[35] W. Siripala, L.D.R.D. Perera, K.T.L. De Silva, J.K.D.S. Jayanetti, I.M. Dharmadasa, Solar Energy Materials & Solar Cells, 251 (1996)
[36] M. Hara, H. Hasei, M. Yashima, S. Ikeda, T. Takata, J. N. Kondo, K. Domen, Applied Catalysis A: General, 190, 35 (2000)
[37] T. Takata, S. Ikeda, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Applied Catalysis, 200, 255 (2000)
[38] N. Ozer, F. Tepehan, Solar Energy Materials and Solar Cell, 30, 13 (1993)
[39] M. Ristov, G. J. Sinadinovski, M. Mitreski, Thin Solid Films, 167, 309 (1988)
[40] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N.Kondo, K. Domen, C. Commun, 3, 357 (1998)
[41] R. Abe. M. Higashi, Z. Zou, K. Sayama, Journal of Physical Chemistry, 108, 811 (2004)
[42] G. M. Kavoulakis, A. Mysyrowicz, Physical Review B, 61, 24, 16619 (2000)
[43] Y. Bessekhouad, D. Robert, J. V. Weber, Catalysis Today, 101, 315 (2005)
[44] K. Johnsen,G. M. Kavoulakis, Phys .Rev .Lett., 86, 858 (2001)
[45] M. Schlesinger, M. Paunovic, Electrochemical Society, (2000)
[46] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsiehc, I. Chend, Scripta Materialia, 57, 53 (2007)
[47] J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto, S. J. Pachuta, Applied Physics, 78, 5109 (1995)
[48] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, T. Sakurai, Solar Energy, 80, 715 (2006)
[49] S. Ishizuka, S. Kato, S. Okamoto, Y. Akimoto, Journal of Crystal Growth, 237, 616 (2002)
[50] J. Oh, Y. Tak, J. Lee, Electrochemical and Solid-State Letters, 7, 27 (2004)
[51] E. Ko, J. Choi, K. Okamoto, Y. Tak, J. Lee, Chem. Phys. Chem., 7, 1505 (2006)
[52] J. S. Choi, E. S. Ko, J. W. Kang, Y. S. Tak, J. Y. Lee, J. Ind. Eng. Chem., 13, 305 (2007)
[53] R. Inguanta, C. Sunseri, S. Piazza, Electrochemical and Solid-State Letters, 10, 63 (2007)
[54] R. Inguanta, S. Piazza, C. Sunseri, Electrochimica Acta, 53, 6504 (2008)
[55] G. Yue, G. Meng, Q. Xu, B. Chen, M. Fang, Materials Letters, 63, 998 (2009)
[56] Y.M. Shen, Y. T. Shih, S. C. Wang, P. K. Nayka, J. L. Huang, Thin Solid Films, 519, 1687 (2010)
[57] M. Chen, Z. L. Pei, X. Wang, C. Sun, L. S. Wen, J. Vac. Sci. Technol. A, 19, 963 (2001)
[58] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu,T. Yao, J. Appl. Phys. 84, 3912 (1998)
[59] Z. K. Tang, G. K. L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett, 72, 3270 (1998)
[60] Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchilcov, S. Dogan, V. Avrutin, S. J. Cho, H. Morboc, J. Appl. Phys., 98, 041301 (2005)
[61] W. Water, S. Y. Chu, Mater. Letters, 55, 67 (2002)
[62] S. Y. Chu, W. Water, J. T. Liaw, Journal of the European Ceramic Society, 23, 1593 (2003)
[63] 水瑞鐏, 「氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用」, 國立成功大學電機工程學系博士論文, 民國91年。
[64] D. G. Baik, S. M. Cho, Thin Solid films, 354, 227 (1999)
[65] P. Nunes, D. Costa, E. Fortunato, R. Martins, Vacuum, 64, 293 (2002)
[66] L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang, X. Xu, Displays, 21, 147 (2000)
[67] Y. Igasaki, H. Saito, Thin Solid Films, 199, 223 (1991)
[68] M. T. Young, S. D. Keun, Thin Solid Films, 410, 8 (2002)
[69] 王敬龍, 「以溶膠-凝膠法製備ITO 薄膜之製程研究」, 國立成功大學材料科學及工程研究所碩士論文, 民國85年。
[70] 許國銓, 「科技玻璃-高性能透明導電膜玻璃」, 材料與社會, 84期, 民國82年,
[71] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang, D. Liu, J. Crystal Growth, 263, 269 (2004)
[72] C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Deng, J. Shi, G. Zhang, Journal of Electron Spectroscopy and Related Phenomena, 101-103, 629 (1999)
[73] C. C. Lin, C. S. Hsiao, S. Y. Chen, S. Y. Cheng, Journal of the European Ceramic Society, 15, 282 (2004)
[74] J. Elias, R. T. Zaere, C. L. Clément, J. Phys. Chem. C, 112, 5736 (2008)
[75] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett., 363, 123 (2002)
[76] Q. Wang, G. Wan, B. Xu, J. Jie, X. Han, Mater. Lett., 59, 1378 (2005)
[77] Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett., 76, 2011 (2000)
[78] M. Lai, D. J. Riley, Chem. Mater., 18, 2233 (2006)
[79] Lee W., Ji R., Osele U., Nielsch K., Nature Materials, 5, 741 (2006)
[80] H. Masuda, F, Hasegwa, S. Ono, J. Electrochem. Soc., 144, 127 (1997)
[81] G. L. Che, B. B. Lakshmi, E. R.Fisher, C. R. Martin, Nature, 393, 346 (1998)
[82] H. Masuda, K. Fukuda, Science, 9, 1466 (1995)
[83] H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys., 37, 1340 (1998)
[84] F. Li, L. Zhang, Robert, Chem. Mater, 1998
[85] H. Masuda, F. Hasegwa , J. Electrochem. Soc., 144, 127 (1997)
[86] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Journal of Applied Physics , 84 , 6023 (1998)
[87]林文章, 「太陽能電池技術入門」, 全華圖書股份有限公司, 民國97年
[88]S.S Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, 53, 2226 (2008)
[89] J. Cui, U. J. Gibson, J. Phys. Chem., 114, 6408 (2010)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top