跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李京桓
研究生(外文):Ching-HuanLee
論文名稱:以Spark Plasma Sintering (SPS)製備氮化矽基奈米複合陶瓷之燒結行為、微結構與機械性質之研究
論文名稱(外文):Sintering behavior, microstructural development and mechanical properties of Si3N4 based nanocomposites by spark plasma sintering (SPS)
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:212
中文關鍵詞:氮化矽奈米複合陶瓷燒結行為微結構微/奈米壓痕技術微破壞行為滑動磨耗
外文關鍵詞:Si3N4nanocompositesintering behaviormicrostructuremicro/nano-indentationmicro-cracking behaviorsliding wear
相關次數:
  • 被引用被引用:0
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用β相氮化矽、碳化鈦與氮化鈦等商用奈米粉體為起始原料,配合SPS燒結技術製備燒結體。藉由調整SPS的燒結參數,控制單一相氮化矽、氮化矽/碳化鈦基、氮化矽/氮化鈦基等奈米複合陶瓷的顯微結構,並且選擇適當的材料進行微/奈米壓痕技術與乾式滑動磨耗等機械特性分析。

首先藉由調控升溫速度(50、100及200℃/min),評估各試樣的實際燒結溫度,以控制單一相奈米氮化矽的晶體成長行為。在氮化矽基陶瓷的液相燒結機制下,以慢速升溫(≦100℃/min)進行燒結之試樣,於實際燒結溫度達1746℃時,仍舊維持奈米尺寸的氮化矽晶粒;在快速升溫(200℃/min)條件下且試樣實際燒結溫度達1681℃時,即發生氮化矽晶體異向性成長的現象,升溫速率的差異使得燒結溫度至少降低60℃。除了溶解-再析出機制外,亦藉由觀察到Moiré條紋及差排環等現象,證實晶粒合體亦為影響SPS製程中氮化矽晶粒粗化的主要因素之一。

在奈米複合陶瓷的部分,添加5wt%奈米碳化鈦於基材相中,有助於高溫燒結過程中之氮化矽基晶體粗化行為,此特殊現象可能與SPS脈衝電流誘發介電崩潰機制有關,進而使得燒結體內局部區域燒結溫度升高有關,此與傳統氮化矽陶瓷的燒結現象不同。另一方面,透過增加奈米第二相添加量(TiC與TiN),將可加強釘札效應,進而抑制氮化矽晶體成長,而成功製備一系列氮化矽基奈米複合陶瓷。

藉由微/奈米壓痕試驗,以評估不同晶粒尺寸之單一相氮化矽基陶瓷的機械響應與微破壞行為。結果顯示奈米氮化矽與粗晶粒氮化矽具有相似的彈塑性變形行為,但是奈米氮化矽的硬度與彈性功比例較高,說明其抵抗塑性變形能力較優異。除了高密度的沿晶破壞之微裂縫促進能量耗散外,較大的摩擦滑移阻力與多重裂縫阻力,亦可能為奈米氮化矽基陶瓷於微小應力下,具有較佳的缺陷容忍度。

依據奈米複合陶瓷的微區介面化學特性以及微破壞行為等基礎,設計一個含石墨磨潤相的氮化矽/碳化鈦基奈米複合陶瓷。隨著奈米碳化鈦含量的增加,氮化矽/碳化鈦基奈米複合陶瓷的磨耗損失率呈現V字形變化,而粗晶粒的氮化矽/碳化鈦基複合材料大致維持定值。對於奈米複合陶瓷來說,當奈米碳化鈦含量增加至20~30wt%時,奈米碳化鈦的晶粒拔出(或石墨磨潤相的存在),可能加強化學磨潤效應而改善其磨損率。此外,由於奈米碳化鈦含量的增加,雖然材料破壞阻力降低,但是材料中微裂縫密度提高,導致在磨耗過程中外施力量之能量被分散,同樣有可能提升複合陶瓷的耐磨損性能。

Commercial nanosized β-Si3N4 based materials incorporated with conductive TiC or TiN nanopowders were sintered by spark plasma sintering (SPS). The microstructures of monolithic Si3N4, Si3N4/TiC and Si3N4/TiN based nanocomposites were controlled depending on the sintering parameters in SPS. The micro/nano-indentation characteristics and sliding wear performance for chosen materials were evaluated as well.

At a slower heating rate (≦100℃/min), the nanosized grains are maintained after sintering at 1746℃; while anisotropic grain growth is accelerated above 1681℃ by applying a rapid heating cycle (200℃/min). The difference in heating rates lowers the actual sintering temperature by 60℃ at least. In addition to the dynamic Ostwald ripening that occur during the sintering process, the presence of Morié fringes and dislocations have confirmed that the grain coalescence is one of the possible mechanisms of grain coarsening.

On the other hand, the β-Si3N4-based composite containing 5 wt% nano-TiC shows a larger average grain size and aspect ratio compared to monolithic β-Si3N4-based ceramic. This is possibly because of a leakage current hop across the conductive TiC based grains and causes joule heating during sintering. This is contrary to the conventional sintering behavior of Si3N4. By incorporating the nanosized TiC and TiN, the pinning effect of the titanium-based phase significantly suppresses the grain growth of β-Si3N4 matrix grains, and a series of β-Si3N4-based nanocomposites are thus fabricated successfully in the present study.

The effects of microstructure on the mechanical responses and damage evolution of spark-plasma-sintered β-Si3N4 based ceramics has been evaluated through micro/nano-indentation tests. It was found that the nanoceramic and its coarse-grained counterpart exhibit similar elastoplastic behavior in their indentation responses. However, the increased hardness and ratio of elastic work to total work done in the nanoceramic suggest that resistance to plastic deformation is greater than that in the coarser-grained one. The smaller grain size in bridging ceramic not only enhances the energy dissipation by formation of a higher density of intergranular microcracks along the weak grain boundary phase (GBP), but also toughens the cracked solid through increasing resistance to frictional sliding and multi-cracks propagation. Prior to formation of micro-crack coalescence, better damage tolerance of nanoceramic is thought to be achieved.

A model associated with microcracking and interfacial chemistry of the nanocomposites is proposed, based on the hypothesis of materials’ properties at their nanoscale. Spark plasma sintering of TiC/Si3N4 based nanocomposites with self-lubricating carbon were developed. Wear rate of TiC/Si3N4 based nanocomposites showed a V-shaped curve as a function of nano-TiC addition; whereas the one of their coarse-grained counterparts almost remain constant. The initial improvement in wear resistance is due to the increase of nano-TiC (or C) grain pullout when the nano-TiC addition is up to 20~30wt%, leading to enhancement of tribochemical type wear. Furthermore, because the weakest intrinsic flaws or microcracks were developed with increasing area fraction around TiC based grain boundary, the applied energy would be dissipated and then the wear resistance of materials was enhanced during wear process.

中文摘要 I
英文摘要 III
致謝 V
總目錄 VI
表目錄 XI
圖目錄 XII


第一章 緒論 1

1-1 前言 1
1-2 研究動機 4

第二章 理論基礎 7

2-1 氮化矽基陶瓷材料簡介 7
2-1-1 氮化矽 7
2-1-2 β-Sialon 7
2-1-3 液相燒結理論 10
2-1-4 單一相氮化矽的韌化機構 15
2-2 奈米複合陶瓷 22
2-2-1 簡介 22
2-2-2 韌化機制 26
2-3 Spark Plasma Sintering 33
2-3-1 簡介 33
2-3-2 SPS系統的裝置 33
2-3-3 SPS燒結機制 35
2-4 微/奈米壓痕試驗原理 38
2-5 磨耗理論 44
2-5-1 簡介 44
2-5-2 磨耗機制 45
2-5-3 脫層機制 46
2-5-4 三體磨耗 47

第三章 實驗步驟與方法 48

3-1 試樣的製備 48
3-1-1 原始粉末的規格 48
3-1-2 混合粉末的製備 53
3-1-3 試樣的燒結 53
3-2 燒結體物理性質的測定 54
3-2-1 視密度 54
3-2-2 維氏硬度 54
3-2-3 破壞韌性 55
3-2-4 電阻率 55
3-2-5 微/奈米壓痕試驗 56
3-2-6 滑動磨耗試驗 56
3-3 燒結體的微結構分析與觀察 59
3-3-1 結晶相鑑定 59
3-3-2 掃瞄式電子顯微鏡 59
3-3-3 電子微探分析儀 59
3-3-4 穿透式電子顯微鏡
3-3-5 晶粒大小與長寬軸比 60

第四章 Spark Plasma Sintering的燒結行為與微結構 63

4-1 升溫速率對單一相氮化矽基陶瓷微結構的影響 63
4-1-1 試樣的製程參數 63
4-1-2 燒結體實際溫度的估算 63
4-1-2-1 石墨模具內、外壁溫度差 63
4-1-2-2 溫度過衝效應 68
4-1-3 燒結體的性質與微結構 68
4-1-3-1 視密度與結晶相鑑定 68
4-1-3-2 快速燒結緻密化行為 72
4-1-3-3 微結構的特徵 74
4-1-3-4 晶體粗化行為 79
4-1-3-5 晶粒合體 83
4-1-3-6 硬度與破壞韌性 87
4-2 奈米碳化鈦添加相對氮化矽基材相微結構的影響 89
4-2-1 試樣的製程參數 89
4-2-2 複合陶瓷的性質與微結構 89
4-2-2-1 視密度與結晶相鑑定 89
4-2-2-2 碳化鈦的微結構 91
4-2-2-3 碳化鈦的相變化 100
4-2-2-4 電性質 101
4-2-2-5 氮化矽基材相的微結構特徵 103
4-2-2-6 奈米添加相的影響 109
4-2-2-7 晶粒合體 111
4-2-2-8 硬度與破壞韌性 115
4-3 奈米氮化鈦添加相對氮化矽基材相微結構的影響 117
4-3-1 試樣的製程參數 117
4-3-2 複合陶瓷的性質與微結構 117
4-3-2-1 視密度與結晶相鑑定 117
4-3-2-2 氮化鈦的微結構 117
4-3-2-3 電性質 121
4-3-2-4 氮化矽基材相的微結構 124
4-3-2-5 硬度與破壞韌性 124
4-4 SPS燒結行為與特色 127
4-4-1 快速熱壓助燒結效應 127
4-4-2 脈衝電流助燒結效應 129
4-4-3 後續燒結參數的選擇 132

第五章 奈米複合陶瓷的機械特性 133

5-1 長程裂縫的傳遞行為 133
5-1-1 試樣的製程參數 133
5-1-2 燒結體的特性 133
5-1-2-1 燒結行為 133
5-1-2-2 視密度與結晶相鑑定 135
5-1-2-3 微結構的特徵 135
5-1-2-4 硬度與破壞韌性 140
5-1-3 裂縫的傳遞行為 140
5-2 短程裂縫的微破壞機構 144
5-2-1 試樣的製程參數 144
5-2-2 奈米氮化矽基陶瓷的特性 144
5-2-2-1 微結構的特徵 144
5-2-2-2 硬度與破壞韌性 149
5-2-3 微/奈米壓痕試驗 151
5-2-3-1 壓痕分析方式 151
5-2-3-2 載重-壓深曲線 151
5-2-3-3 深度感應壓痕分析 154
5-2-4 微裂縫形貌 156
5-2-4-1 放射型微裂縫 156
5-2-4-2 殘留壓痕內微裂縫 158
5-2-5 細晶強化機制 160
5-2-5-1 有限元素分析法 160
5-2-5-2 微區破裂行為 162
5-2-5-3 細晶強化機制 167
5-3 氮化矽/碳化鈦基複合陶瓷的磨耗行為 170
5-3-1 試樣的製程參數 172
5-3-2 複合陶瓷的特性與微結構 172
5-3-2-1 視密度與結晶相鑑定 172
5-3-2-2 電性質 172
5-3-2-3 微結構的特徵 174
5-3-2-4 硬度 178
5-3-2-5 破壞韌性 178
5-3-3 滑動磨耗測試 181
5-3-3-1 摩擦係數 181
5-3-3-2 磨耗率 183
5-3-3-3 磨耗面觀察 183
5-3-4 磨耗機制 186

第六章 結論 194

參考文獻 196

[1] Riley FL. Silicon nitride and related materials. J Am Ceram Soc. 2000;83:245-65.
[2] Klemm H. Silicon Nitride for High-Temperature Applications. J Am Ceram Soc. 2010;93:1501-22.
[3] Shibata N, Pennycook SJ, Gosnell TR, Painter GS, Shelton WA, Becher PF. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature. 2004;428:730-3.
[4] Doblinger M, Winkelman GB, Dwyer C, Marsh C, Kirkland AI, Cockayne DJH, et al. Structural and compositional comparison of Si3N4 ceramics with different fracture modes. Acta Mater. 2006;54:1949-56.
[5] Dwyer C, Ziegler A, Shibata N, Winkelman GB, Satet RL, Hoffmann MJ, et al. Interfacial structure in silicon nitride sintered with lanthanide oxide. J Mater Sci. 2006;41:4405-12.
[6] Ziegler A, Idrobo JC, Cinibulk MK, Kisielowski C, Browning ND, Ritchie RO. Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science. 2004;306:1768-70.
[7] Ziegler A, McNaney JM, Hoffmann MJ, Ritchie RO. On the effect of local grain-boundary chemistry on the macroscopic mechanical properties of a high-purity Y2O3-Al2O3-containing silicon nitride ceramic: Role of oxygen. J Am Ceram Soc. 2005;88:1900-8.
[8] Becher PF, Painter GS, Shibata N, Satet RL, Hoffmann MJ, Pennycook SJ. Influence of additives on anisotropic grain growth in silicon nitride ceramics. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2006;422:85-91.
[9] Becher PF, Shibata N, Painter GS, Averill F, van Benthem K, Lin HT, et al. Observations on the Influence of Secondary Me Oxide Additives (Me = Si, Al, Mg) on the Microstructural Evolution and Mechanical Behavior of Silicon Nitride Ceramics Containing RE2O3 (RE = La, Gd, Lu). J Am Ceram Soc. 2010;93:570-80.
[10] Shibata N, Painter GS, Satet RL, Hoffmann MJ, Pennycook SJ, Becher PF. Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. Phys Rev B. 2005;72.
[11] Becher PF, Painter GS, Shibata N, Waters SB, Lin HT. Effects of rare-earth (RE) intergranular adsorption on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with RE2O3 + MgO additives: RE=La, Gd, and Lu. J Am Ceram Soc. 2008;91:2328-36.
[12] Demetriou MD, Launey ME, Garrett G, Schramm JP, Hofmann DC, Johnson WL, et al. A damage-tolerant glass. Nat Mater. 2011;10:123-8.
[13] Kitayama M, Hirao K, Toriyama M, Kanzaki S. Thermal conductivity of beta-Si3N4: I, effects of various microstructural factors. J Am Ceram Soc. 1999;82:3105-12.
[14] Kitayama M, Hirao K, Tsuge A, Watari K, Toriyama M, Kanzaki S. Thermal conductivity of beta-Si3N4: II, effect of lattice oxygen. J Am Ceram Soc. 2000;83:1985-92.
[15] Kitayama M, Hirao K, Watari K, Toriyama M, Kanzaki S. Thermal conductivity of beta-Si3N4: III, effect of rare-earth (RE = La, Nd, Cd, Y, Yb, and Sc) oxide additives. J Am Ceram Soc. 2001;84:353-8.
[16] Hirao K, Watari K, Brito ME, Toriyama M, Kanzaki S. High thermal conductivity in silicon nitride with anisotropic microstructure. J Am Ceram Soc. 1996;79:2485-8.
[17] Zhu X, Sakka Y, Zhou Y, Hirao K. Processing and properties of sintered reaction-bonded silicon nitride with Y2O3-MgSiN2: Effects of Si powder and Li2O addition. Acta Mater. 2007;55:5581-91.
[18] Zhou Y, Zhu X, Hirao K, Lences Z. Sintered reaction-bonded silicon nitride with high thermal conductivity and high strength. International Journal of Applied Ceramic Technology. 2008;5:119-26.
[19] Zhou Y, Hyuga H, Kusano D, Yoshizawa Y, Hirao K. A Tough Silicon Nitride Ceramic with High Thermal Conductivity. Advanced Materials. 2011;23:4563-+.
[20] Kim JH, Kumar BVM, Hong SH, Kim HD. Fabrication of Silicon Nitride Nanoceramics and their Tribological Properties. J Am Ceram Soc. 2010;93:1461-6.
[21] Gonzalez-Julian J, Schneider J, Miranzo P, Osendi MI, Belmonte M. Enhanced Tribological Performance of Silicon Nitride-Based Materials by Adding Carbon Nanotubes. J Am Ceram Soc. 2011;94:2542-8.
[22] Tsuruta K, Nakano A, Kalia RK, Vashishta P. Dynamics of consolidation and crack growth in nanocluster-assembled amorphous silicon nitride. J Am Ceram Soc. 1998;81:433-6.
[23] Kalia RK, Nakano A, Vashishta P, Rountree CL, Van Brutzel L, Ogata S. Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and glasses. International Journal of Fracture. 2003;121:71-9.
[24] Rupert TJ, Schuh CA. Sliding wear of nanocrystalline Ni-W: Structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 2010;58:4137-48.
[25] Rupert TJ, Trenkle JC, Schuh CA. Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 2011;59:1619-31.
[26] Deng CA, Schuh CA. Atomistic Simulation of Slow Grain Boundary Motion. Phys Rev Lett. 2011;106.
[27] Bobylev SV, Ovid'ko IA. Nanograin nucleation initiated by intergrain sliding and/or lattice slip in nanomaterials. Appl Phys Lett. 2008;92.
[28] Morozov NF, Ovid'ko IA, Sheinerman AG, Aifantis EC. Special rotational deformation as a toughening mechanism in nanocrystalline solids. Journal of the Mechanics and Physics of Solids. 2010;58:1088-99.
[29] Ovid'ko IA. Review on the fracture processes in nanocrystalline materials. J Mater Sci. 2007;42:1694-708.
[30] Ovid'ko IA, Sheinerman AG, Aifantis EC. Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 2011;59:5023-31.
[31] Bobylev SV, Morozov NF, Ovid'ko IA. Cooperative grain boundary sliding and nanograin nucleation process in nanocrystalline, ultrafine-grained, and polycrystalline solids. Phys Rev B. 2011;84.
[32] Bobylev SV, Mukherjee AK, Ovid'ko IA, Sheinerman AG. Effects of intergrain sliding on crack growth in nanocrystalline materials. International Journal of Plasticity. 2010;26:1629-44.
[33] Orru R, Licheri R, Locci AM, Cincotti A, Cao GC. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R-Rep. 2009;63:127-287.
[34] Garay JE, Anselmi-Tamburini U, Munir ZA. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater. 2003;51:4487-95.
[35] Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA. Fundamental investigations on the spark plasma sintering/synthesis process - II. Modeling of current and temperature distributions. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2005;394:139-48.
[36] Belmonte M, Gonzalez-Julian J, Miranzo P, Osendi MI. Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials. J European Ceram Soc. 2010;30:2937-46.
[37] Duan RG, Garay JE, Kuntz JD, Mukherjee AK. Electrically conductive in situ formed nano-Si3N4/SiC/TiCxN1-x ceramic composite consolidated by pulse electric current sintering (PECS). J Am Ceram Soc. 2005;88:66-70.
[38] Xu X, Nishimura T, Hirosaki N, Xie RJ, Zhu YC, Yamamoto Y, et al. New strategies for preparing NanoSized silicon nitride ceramics. J Am Ceram Soc. 2005;88:934-7.
[39] Xu X, Nishimura T, Hirosaki N, Xie RJ, Yamamoto Y, Tanaka H. Fabrication of alpha-sialon nano-ceramics. In: Ohji T, Sekino T, Niihara K, editors. Science of Engineering Ceramics Iii2006. p. 629-32.
[40] Xu X, Nishimura T, Hirosaki N, Xie RJ, Yamamoto Y, Tanaka H. Fabrication of beta-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering. Nanotechnology. 2005;16:1569-73.
[41] Xu X, Nishimura T, Hirosaki N, Xie RJ, Tanaka H. Fabrication of a nano-Si3N4/nano-C composite by high-energy ball milling and spark plasma sintering. J Am Ceram Soc. 2007;90:1058-62.
[42] Suganuma M, Kitagawa Y, Wada S, Murayama N. Pulsed electric current sintering of silicon nitride. J Am Ceram Soc. 2003;86:387-94.
[43] Melendez-Martinez JJ, Dominguez-Rodriguez A. Creep of silicon nitride. Prog Mater Sci. 2004;49:19-107.
[44] Suematsu H, Mitomo M, Mitchell TE, Petrovic JJ, Fukunaga O, Ohashi N. The alpha-beta transformation in silicon nitride single crystals. J Am Ceram Soc. 1997;80:615-20.
[45] Terwilliger GR, Lange FF. PRESSURELESS SINTERING OF SI3N4. J Mater Sci. 1975;10:1169-74.
[46] Grun R. CRYSTAL-STRUCTURE OF BETA-SI3N4 - STRUCTURAL AND STABILITY CONSIDERATIONS BETWEEN ALPHA-SI3N4 AND BETA-SI3N4. Acta Crystallographica Section B-Structural Science. 1979;35:800-4.
[47] Ekstrom T, Nygren M. SIAION CERAMICS. J Am Ceram Soc. 1992;75:259-76.
[48] Sekercioglu I, Wills RR. EFFECT OF SI3N4 POWDER REACTIVITY ON THE PREPARATION OF THE SI2N2O-AL2O3 SILICON ALUMINUM OXYNITRIDE SOLID-SOLUTION. J Am Ceram Soc. 1979;62:590-3.
[49] 黃肇瑞. 陶瓷技術手冊(下)-第二十三章 氮化物1999.
[50] Kijima K, Shirasaki S. NITROGEN SELF-DIFFUSION IN SILICON-NITRIDE. Journal of Chemical Physics. 1976;65:2668-71.
[51] Kingery WD. Densification during sintering in the presence of a liquid phase. I. Theory. J Appl Phys. 1959;30:301-6.
[52] Woetting G, Feuer H, Gugel E. The influence of powder and processing methods on microstructure and properties of dense silicon nitride. MRS Symp Proc. Boston1993. p. 146.
[53] Weiss J. SILICON-NITRIDE CERAMICS - COMPOSITION, FABRICATION PARAMETERS, AND PROPERTIES. Annual Review of Materials Science. 1981;11:381-99.
[54] Faber KT, Evans AG. CRACK DEFLECTION PROCESSES .1. THEORY. Acta Metallurgica. 1983;31:565-76.
[55] Faber KT, Evans AG. CRACK DEFLECTION PROCESSES .2. EXPERIMENT. Acta Metallurgica. 1983;31:577-84.
[56] Becher PF. MICROSTRUCTURAL DESIGN OF TOUGHENED CERAMICS. J Am Ceram Soc. 1991;74:255-69.
[57] Becher PF, Hsueh CH, Angelini P, Tiegs TN. TOUGHENING BEHAVIOR IN WHISKER-REINFORCED CERAMIC MATRIX COMPOSITES. J Am Ceram Soc. 1988;71:1050-61.
[58] Nihara K. NEW DESIGN CONCEPT OF STRUCTURAL CERAMICS - CERAMIC NANOCOMPOSITES. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan. 1991;99:974-82.
[59] Gogotsi YG. PARTICULATE SILICON NITRIDE-BASED COMPOSITES. J Mater Sci. 1994;29:2541-56.
[60] Shew BY, Huang JL. INVESTIGATION OF CHEMICAL-REACTIONS IN TIB2/SI3N4 COMPOSITES. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 1992;159:127-33.
[61] Bai L, Ge CC, Shen WP, Mao XD, Zhang K. Densification, microstructure, and fracture behavior of TiC/Si3N4 composites by spark plasma sintering. Rare Metals. 2008;27:315-9.
[62] Huang JL, Lee MT, Lu HH, Lii DF. Microstructure, chemical reaction and mechanical properties of TiC/Si3N4 and TiN-coated TiC/Si3N4 composites. J Mater Sci. 1996;31:4899-906.
[63] Huang JL, Chang YL, Lu HH. Fabrication of multilaminated Si3N4-Si3N4/TiN composites and its anisotropic fracture behavior. J Mater Res. 1997;12:2337-44.
[64] Wei GC, Becher PF. IMPROVEMENTS IN MECHANICAL-PROPERTIES IN SIC BY THE ADDITION OF TIC PARTICLES. J Am Ceram Soc. 1984;67:571-4.
[65] Cutler RA, Virkar AV. THE EFFECT OF BINDER THICKNESS AND RESIDUAL-STRESSES ON THE FRACTURE-TOUGHNESS OF CEMENTED CARBIDES. J Mater Sci. 1985;20:3557-73.
[66] Taya M, Hayashi S, Kobayashi AS, Yoon HS. TOUGHENING OF A PARTICULATE-REINFORCED CERAMIC-MATRIX COMPOSITE BY THERMAL RESIDUAL-STRESS. J Am Ceram Soc. 1990;73:1382-91.
[67] Leroy G, Embury JD, Edward G, Ashby MF. A MODEL OF DUCTILE FRACTURE BASED ON THE NUCLEATION AND GROWTH OF VOIDS. Acta Metallurgica. 1981;29:1509-22.
[68] Munir ZA, Quach DV, Ohyanagi M. Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. J Am Ceram Soc. 2011;94:1-19.
[69] Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci. 2006;41:763-77.
[70] Lu K. Sintering of nanoceramics. International Materials Reviews. 2008;53:21-38.
[71] Song XY, Liu XM, Zhang JX. Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc. 2006;89:494-500.
[72] Wang SW, Chen LD, Hirai T. Densification of AL2O3 powder using spark plasma sintering. J Mater Res. 2000;15:982-7.
[73] Shen ZJ, Zhao Z, Peng H, Nygren M. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature. 2002;417:266-9.
[74] Fischer-Cripps AC. Nanoindentation. New York: Springer; 2002.
[75] Oliver WC, Pharr GM. AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS. J Mater Res. 1992;7:1564-83.
[76] Ian N S. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science. 1965;3:47-57.
[77] Yu N, Polycarpou AA, Conry TF. Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation. Thin Solid Films. 2004;450:295-303.
[78] R.B K. Elastic analysis of some punch problems for a layered medium. International Journal of Solids and Structures. 1987;23:1657-64.
[79] Rabinowicz E. Friction and Wear of Materials. 2nd edition ed: John Wiley & Sons, Inc.; 1995.
[80] Archard JF. Contact and Rubbing of Flat Surfaces. J Appl Phys. 1953;24:981-8.
[81] Suh NP. CITATION CLASSIC - THE DELAMINATION THEORY OF WEAR. Current Contents/Engineering Technology & Applied Sciences. 1981:16-.
[82] Kato K. TRIBOLOGY OF CERAMICS. Wear. 1990;136:117-33.
[83] Fleming JR, Suh NP. Mechanics of crack propagation in delamination wear. Wear. 1977;44:39-56.
[84] Nam P S. An overview of the delamination theory of wear. Wear. 1977;44:1-16.
[85] Misra A, Finnie I. Correlations between two-body and three-body abrasion and erosion of metals. Wear. 1981;68:33-9.
[86] Demello JDB, Durandcharre M, Mathia T. ABRASION MECHANISMS OF WHITE CAST-IRON .1. INFLUENCE OF THE METALLURGICAL STRUCTURE OF MOLYBDENUM WHITE CAST IRONS. Materials Science and Engineering. 1985;73:203-13.
[87] Miyoshi K. FUNDAMENTAL CONSIDERATIONS IN ADHESION, FRICTION AND WEAR FOR CERAMIC METAL CONTACTS. Wear. 1990;141:35-44.
[88] Neumann G, Ettmayer P, Kieffer R. SYSTEM TIC-TIN-TIO. Monatshefte Fur Chemie. 1972;103:1130-&.
[89] Evans AG, Charles EA. FRACTURE TOUGHNESS DETERMINATIONS BY INDENTATION. J Am Ceram Soc. 1976;59:371-2.
[90] Knapp JA, Follstaedt DM, Myers SM, Barbour JC, Friedmann TA. Finite-element modeling of nanoindentation. J Appl Phys. 1999;85:1460-74.
[91] Holland TJB, Redfern SAT. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineralogical Magazine. 1997;61:65-77.
[92] Zavaliangos A, Zhang J, Krammer M, Groza JR. Temperature evolution during field activated sintering. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2004;379:218-28.
[93] Wang X, Casolco SR, Xu G, Garay JE. Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress. Acta Mater. 2007;55:3611-22.
[94] Rathel J, Herrmann M, Beckert W. Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST). J European Ceram Soc. 2009;29:1419-25.
[95] Wang YC, Fu ZY. Study of temperature field in spark plasma sintering. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2002;90:34-7.
[96] Salamon D, Shen Z, Sajgalik P. Rapid formation of alpha-sialon during spark plasma sintering: Its origin and implications. J European Ceram Soc. 2007;27:2541-7.
[97] Shen ZJ, Nygren M. Kinetic aspects of superfast consolidation of silicon nitride based ceramics by spark plasma sintering. J Mater Chem. 2001;11:204-7.
[98] Kolitsch U, Seifert HJ, Ludwig T, Aldinger F. Phase equilibria and crystal chemistry in the Y2O3-Al2O3-SiO2 system. J Mater Res. 1999;14:447-55.
[99] 孫目珍. 電解質物理基礎. 廣州: 華南理工大學出版社; 2002.
[100] Fang MH. Mechanism of Spark Plasma Sintering of Non-conductive Materials. Beijing: Tsinghua University; 2005.
[101] Kingery WD. Effect of Applied Pressure on Densification During Sintering in the Presence of a Liquid Phase. J Am Ceram Soc. 1963;46:391-5.
[102] Barsoum MW. Fundamentals of Ceramics. International Editions ed. Asia: McGraw-Hill Education; 2000.
[103] Park YJ, Hwang NM, Yoon DY. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix. Metall Mater Trans A-Phys Metall Mater Sci. 1996;27:2809-19.
[104] Lee CJ, Kim DJ, Kang ES. Effect of alpha-Si3N4 particle size on the microstructural evolution of Si3N4 ceramics. J Am Ceram Soc. 1999;82:753-6.
[105] Lee CJ, Chae JI, Kim DJ. Effect of beta-Si3N4 starting powder size on elongated grain growth in beta-Si3N4 ceramics. J European Ceram Soc. 2000;20:2667-71.
[106] Herrmann M, Schulz I, Zalite I. Materials based on nanosized beta-Si3N4 composite powders. J European Ceram Soc. 2004;24:3327-35.
[107] Peng H, Shen ZJ, Nygren M. Formation of in situ reinforced microstructures in alpha-sialon ceramics: Part III. Static and dynamic ripening. J Mater Res. 2004;19:2402-9.
[108] Shen ZJ, Peng H, Liu J, Nygren M. Conversion from nano- to micron-sized structures: experimental observations. J European Ceram Soc. 2004;24:3447-52.
[109] Peng H, Shen ZJ, Nygren M. Reaction sequences occurring in dense Li-doped sialon ceramics: influence of temperature and holding time. J Mater Chem. 2003;13:2285-9.
[110] Lu HH, Huang JL. Microstructure in silicon nitride containing beta-phase seeding: III, grain growth and coalescence. J Am Ceram Soc. 2001;84:1891-5.
[111] Whelan MJ. Dynamic theory of electron diffraction. In: Amelinckx S, Gevers R, Vanlanduyt J, editors. New York1978. p. 43-106.
[112] Hwang M, Laughling DE, Bernstein IM. Interphase interfaces of Au-Ag and Au-Pd. Acta Mater. 1980;28:621-32.
[113] Williams DB, Carter CB. Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press; 1996.
[114] Lee WE, Hilmas GE. MICROSTRUCTURAL CHANGES IN BETA-SILICON NITRIDE GRAINS UPON CRYSTALLIZING THE GRAIN-BOUNDARY GLASS. J Am Ceram Soc. 1989;72:1931-7.
[115] Buljan ST, Baldoni JG, Neil J, Zilberstein G. Dispersolid-Toughened Silicon Nitride Composite. ORNL/Sub/85-22011/1, GTE; 1988.
[116] Peillon FC, Thevenot F. Microstructural designing of silicon nitride related to toughness. J European Ceram Soc. 2002;22:271-8.
[117] Bucevac D, Boskovic S, Matovic B, Zivkovic L, Vlajic M, Krstic V. Correlation between fracture toughness and microstructure of seeded silicon nitride ceramics. J Mater Sci. 2007;42:7920-6.
[118] Lide DR. CRC Handbook of Chemistry and Physics. 83rd edition ed. Boca Raton: CRC Press; 2002-2003.
[119] Licko T, Figusch V, Puchyova J. Carbothermal reduction and nitriding of TiO2. J European Ceram Soc. 1989;5:257-65.
[120] Hampshire S. Oxynitride Glasses and Glass Ceramics. In: Chen IW, Becher PF, Mitomo M, Petzow G, Yen TS, editors. Materials Research Society Symposia Proceedings, Silicon Nitride Ceramics: Scientific and Technological Advances. Pittsburgh, PA,: Materials Research Society; 1993. p. 93-104.
[121] Huang JL, Chiu HL, Lee MT. MICROSTRUCTURE AND CHEMICAL-REACTION IN A SI3N4-TIC COMPOSITE. J Am Ceram Soc. 1994;77:705-10.
[122] Deepa KS, Nisha S, Parameswaran P, Sebastian MT, James J. Effect of conductivity of filler on the percolation threshold of composites. Appl Phys Lett. 2009;94.
[123] Abdurakhmanov U, Sharipov S, Rakhimova Y, Karabaeva M, Baydjanov M. Conductivity and permittivity of nickel-nanoparticle-containing ceramic materials in the vicinity of percolation threshold. J Am Ceram Soc. 2006;89:2946-8.
[124] Ambegaokar V, Halperin BI, Langer JS. HOPPING CONDUCTIVITY IN DISORDERED SYSTEMS. Physical Review B-Solid State. 1971;4:2612-+.
[125] Sheng P, Abeles B, Arie Y. HOPPING CONDUCTIVITY IN GRANULAR METALS. Phys Rev Lett. 1973;31:44-7.
[126] Lai KR, Tien TY. KINETICS OF BETA-SI3N4 GRAIN-GROWTH IN SI3N4 CERAMICS SINTERED UNDER HIGH-NITROGEN PRESSURE. J Am Ceram Soc. 1993;76:91-6.
[127] Kramer M, Hoffmann MJ, Petzow G. GRAIN-GROWTH STUDIES OF SILICON-NITRIDE DISPERSED IN AN OXYNITRIDE GLASS. J Am Ceram Soc. 1993;76:2778-84.
[128] Hoffmann MJ, Petzow G. TAILORED MICROSTRUCTURES OF SILICON-NITRIDE CERAMICS. Pure and Applied Chemistry. 1994;66:1807-14.
[129] Song YS, Osullivan D, Hampshire S. Si3N4 and Si3N4-SiC particulate composite ceramics. Journal of Materials Processing Technology. 1996;56:346-53.
[130] Zhou RC, Feng ZC, Liang Y, Zheng F, Xian QG. Reactions between SiC and sintering aids in Si3N4/SiC nanocomposites and their consequences. Ceram Int. 2001;27:571-6.
[131] Kramer M, Wittmuss D, Kuppers H, Hoffmann MJ, Petzow G. RELATIONS BETWEEN CRYSTAL-STRUCTURE AND GROWTH-MORPHOLOGY OF BETA-SI3N4. Journal of Crystal Growth. 1994;140:157-66.
[132] Belmonte M, de Pablos A, Osendi MI, Miranzo P. Effects of seeding and arnounts of Y2O3 : Al2O3 additives on grain growth in Si3N4 ceramics. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2008;475:185-9.
[133] Saito N, Kai K, Furusho S, Nakashima K, Mori K, Shimizu F. Properties of nitrogen-containing yttria-alumina-silica melts and glasses. J Am Ceram Soc. 2003;86:711-6.
[134] Sato SG, Chu MC, Kim JH, Kobayashi Y, Ando K. INFLUENCE OF SIC PARTICLE-SIZE ON MICROSTRUCTURE AND MECHANICAL-PROPERTIES OF SI3N4/SIC COMPOSITE CERAMICS. J Ceram Soc Jpn. 1995;103:676-9.
[135] Hwang SL, Chen IW. NUCLEATION AND GROWTH OF ALPHA'-SIALON ON ALPHA-SI3N4. J Am Ceram Soc. 1994;77:1711-8.
[136] Chatfield C, Ekstrom T, Mikus M. MICROSTRUCTURAL INVESTIGATION OF ALPHA-BETA YTTRIUM SIALON MATERIALS. J Mater Sci. 1986;21:2297-307.
[137] 邱鴻亮. 熱壓碳化鈦/氮化矽陶瓷複合材料的化學反應極其顯微組織對破壞行為的影響之研究. 台南: 國立成功大學; 1992.
[138] Zivkovic L, Nikolic Z, Boskovic S, Miljkovic M. Microstructural characterization and computer simulation of conductivity in Si3N4-TiN composites. J Alloy Compd. 2004;373:231-6.
[139] Guo Z, Blugan G, Kirchner R, Reece M, Graule T, Kuebler J. Microstructure and electrical properties of Si3N4-TiN composites sintered by hot pressing and spark plasma sintering. Ceram Int. 2007;33:1223-9.
[140] Vanmeensel K, Laptev A, Van der Biest O, Vleugels J. The influence of percolation during pulsed electric current sintering of ZrO2-TiN powder compacts with varying TiN content. Acta Mater. 2007;55:1801-11.
[141] Salehi S, Van der Biest O, Vleugels J. Electrically conductive ZrO2-TiN composites. J European Ceram Soc. 2006;26:3173-9.
[142] Makino M. New Ceramics. 1997:252-6.
[143] Wang YC, Fu ZY, Wang WM, Zhu HX. Temperature field distribution in spark plasma sintering of BN. Journal of Wuhan University of Technology-Materials Science Edition. 2002;17:19-21.
[144] Tung CH, Pey KL, Tang LJ, Radhakrishnan MK, Lin WH, Palumbo F, et al. Percolation path and dielectric-breakdown-induced-epitaxy evolution during ultrathin gate dielectric breakdown transient. Appl Phys Lett. 2003;83:2223-5.
[145] Tang LJ, Pey KL, Tung CH, Radhakrishnan MK, Lin WH. Gate dielectric-breakdown-induced microstructural damage in MOSFETs. IEEE Trans Device Mater Reliab. 2004;4:38-45.
[146] Wang LJ, Jiang W, Chen LD, Yang M, Zhu HM. Consolidation of nano-sized TiN powders by spark plasma sintering. J Am Ceram Soc. 2006;89:2364-6.
[147] M.S. El-Eskandarany, M. Omori TK, T.J. Konno, K. Sumiyama, T. Hirai, Suzuki K. Mechanically induced carbonization for formation of nanocrystalline TiC alloy. Sci Rep Res Inst, Tohoku Univ Ser A: Phys. 1997;43:181.
[148] Ambrosetti G, Grimaldi C, Balberg I, Maeder T, Danani A, Ryser P. Solution of the tunneling-percolation problem in the nanocomposite regime. Phys Rev B. 2010;81.
[149] Bondar A, Kordera LN. Physicochemical study of yttrium aluminate. Tugoplavkie Met. E.M. Savitskii (Ed.) ed1984. p. 119-25.
[150] Hwang SL, Chen IW. REACTION HOT-PRESSING OF ALPHA-SIALON AND BETA-SIALON CERAMICS. J Am Ceram Soc. 1994;77:165-71.
[151] Becher PF, Painter GS, Lance MJ, Ii S, Ikuhara Y. Direct observations of debonding of reinforcing grains in silicon nitride ceramics sintered with yttria plus alumina additives. J Am Ceram Soc. 2005;88:1222-6.
[152] Becher PF, Sun EY, Plucknett KP, Alexander KB, Hsueh CH, Lin HT, et al. Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. J Am Ceram Soc. 1998;81:2821-30.
[153] Xie ZH, Hoffman M, Moon RJ, Munroe PR, Cheng YB. Subsurface indentation damage and mechanical characterization of alpha-sialon ceramics. J Am Ceram Soc. 2004;87:2114-24.
[154] Huang JL, Chen SY, Lee MT. MICROSTRUCTURE, CHEMICAL ASPECTS, AND MECHANICAL-PROPERTIES OF TIB2/SI3N4 AND TIN/SI3N4 COMPOSITES. J Mater Res. 1994;9:2349-54.
[155] Huang JL, Lee MT, Lu HH, Lii DF. Microstructure, fracture behavior and mechanical properties of TiN/Si3N4 composites. Materials Chemistry and Physics. 1996;45:203-10.
[156] Lee SK, Wuttiphan S, Lawn BR. Role of microstructure in hertzian contact damage in silicon nitride .1. Mechanical characterization. J Am Ceram Soc. 1997;80:2367-81.
[157] Gong JH, Miao HZ, Peng ZJ, Qi LH. Effect of peak load on the determination of hardness and Young's modulus of hot-pressed Si3N4 by nanoindentation. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2003;354:140-5.
[158] Pande CS, Cooper KP. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689-706.
[159] Janakiraman N, Aldinger F. Indentation analysis of elastic and plastic deformation of precursor-derived Si-C-N ceramics. J European Ceram Soc. 2010;30:775-85.
[160] Hay JC, Sun EY, Pharr GM, Becher PF, Alexander KB. Elastic anisotropy of beta-silicon nitride whiskers. J Am Ceram Soc. 1998;81:2661-9.
[161] Zhu XY, Luo JT, Zeng F, Pan F. Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films. 2011;520:818-23.
[162] Ekici R, Apalak MK, Yildirim M. Indentation behavior of functionally graded Al-SiC metal matrix composites with random particle dispersion. Composites Part B-Engineering. 2011;42:1497-507.
[163] Li XD, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization. 2002;48:11-36.
[164] Lawn BR. Fracture and deformation in brittle solids: A perspective on the issue of scale. J Mater Res. 2004;19:22-9.
[165] Lee SK, Lawn BR. Contact fatigue in silicon nitride. J Am Ceram Soc. 1999;82:1281-8.
[166] Lee SK, Lawn BR. Role of microstructure in Hertzian contact damage in silicon nitride: II, strength degradation. J Am Ceram Soc. 1998;81:997-1003.
[167] Carvalho NJM, De Hosson JTM. Deformation mechanisms in TiN/(Ti,Al)N multilayers under depth-sensing indentation. Acta Mater. 2006;54:1857-62.
[168] Hirosaki N, Kocer C, Ogata S, Tatsumi K. Ab initio characterization of the mechanical and electronic properties of beta-SiAlON (Si6-zAlzOzN8-z; z=0-5). Phys Rev B. 2005;71.
[169] Ching WY, Rulis P, Ouyang LZ, Aryal S, Misra A. Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic beta-Si3N4. Phys Rev B. 2010;81.
[170] Kraft RH, Molinari JF, Ramesh KT, Warner DH. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties. Journal of the Mechanics and Physics of Solids. 2008;56:2618-41.
[171] Deshpande VS, Evans AG. Inelastic deformation and energy dissipation in ceramics: A mechanism-based constitutive model. Journal of the Mechanics and Physics of Solids. 2008;56:3077-100.
[172] Mukhopadhyay A, Basu B. Consolidation microstructure property relationships in bulk nanoceramics and ceramic nanocomposites: a review. International Materials Reviews. 2007;52:257-88.
[173] Lawn BR, Marshall DB. Nonlinear stress-strain curves for solids containing closed cracks with friction. Journal of the Mechanics and Physics of Solids. 1998;46:85-113.
[174] Lawn BR, Lee SK, Peterson IM, Wuttiphan S. Model of strength degradation from Hertzian contact damage in tough ceramics. J Am Ceram Soc. 1998;81:1509-20.
[175] FischerCripps AC, Lawn BR. Indentation stress-strain curves for 'quasi-ductile' ceramics. Acta Mater. 1996;44:519-27.
[176] Sun EY, Becher PF, Plucknett KP, Hsueh CH, Alexander KB, Waters SB, et al. Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives. J Am Ceram Soc. 1998;81:2831-40.
[177] Kruzic JJ, Satet RL, Hoffmann MJ, Cannon RM, Ritchie RO. The utility of R-curves for understanding fracture toughness-strength relations in bridging ceramics. J Am Ceram Soc. 2008;91:1986-94.
[178] Funfschilling S, Fett T, Hoffmann MJ, Oberacker R, Schwind T, Wippler J, et al. Mechanisms of toughening in silicon nitrides: The roles of crack bridging and microstructure. Acta Mater. 2011;59:3978-89.
[179] Tewari A, Basu B, Bordia RK. Model for fretting wear of brittle ceramics. Acta Mater. 2009;57:2080-7.
[180] Petrofes NF, Gadalla AM. ELECTRICAL-DISCHARGE MACHINING OF ADVANCED CERAMICS. American Ceramic Society Bulletin. 1988;67:1048-52.
[181] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97.
[182] Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters. 2006;6:2667-73.
[183] Bao YW, Liu CC, Huang JL. Effects of residual stresses on strength and toughness of particle-reinforced TiN/Si3N4 composite: Theoretical investigation and FEM simulation. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2006;434:250-8.
[184] Blau PJ. On the nature of running-in. Tribol Int. 2005;38:1007-12.
[185] Hsu SM, Munro RG, Shen MC, Gate RS. Boundary Lubricated Wear. In Wear-Materials, Mechanisms&Practice. G. W., Ed. ed. London: John Wiley & Sons Inc.; 2005.
[186] 李國榮. 碳-碳複合材料模擬煞車磨潤行為研究. 台南: 國立成功大學; 1997.
[187] Vizintin J, Kalin M, Novak S, Drazic G, Ives LK, Peterson MB. Effect of slip amplitude on the fretting wear of silicon nitride against silicon nitride. Wear. 1996;192:11-20.
[188] Hu CF, Zhou YC, Bao YW, Wan DT. Tribological properties of polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites. J Am Ceram Soc. 2006;89:3456-61.
[189] Sarkar D, Basu B, Cho SJ, Chu MC, Hwang SS, Park SW. Tribological properties of Ti3SiC2. J Am Ceram Soc. 2005;88:3245-8.
[190] Sullivan JL, Shi BG, Saied SO. Microtribological studies of two-phase Al2O3-TiC ceramic at low contact pressure. Tribol Int. 2005;38:987-94.
[191] Ortiz-Merino JL, Todd RI. Relationship between wear rate, surface pullout and microstructure during abrasive wear of alumina and alumina/SiC nanocomposites. Acta Mater. 2005;53:3345-57.
[192] Wang XT, Padture NP, Tanaka H, Ortiz AL. Wear-resistant ultra-fine-grained ceramics. Acta Mater. 2005;53:271-7.
[193] Davidge RW, Twigg PC, Riley FL. Effects of silicon carbide nano-phase on the wet erosive wear of polycrystalline alumina. J European Ceram Soc. 1996;16:799-802.
[194] Yoshimura M, Komura O, Yamakawa A. Microstructure and tribological properties of nano-sized Si3N4. Scr Mater. 2001;44:1517-21.
[195] Basu B, Lee JH, Kim DY. Development of nanocrystalline wear-resistant Y-TZP ceramics. J Am Ceram Soc. 2004;87:1771-4.
[196] Venkateswaran T, Sarkar D, Basu B. Tribological properties of WC-ZrO2 nanocomposites. J Am Ceram Soc. 2005;88:691-7.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊