跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威宇
研究生(外文):Wei-YuChen
論文名稱:錫0.7銅覆晶銲錫接點內介金屬化合物之電致再結晶行為研究
論文名稱(外文):Investigations on the Electrorecrystallization of Intermetallic Compound in the Flip Chip Sn0.7Cu Solder Joint
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:84
中文關鍵詞:銲錫熱遷移電遷移介金屬化合物
外文關鍵詞:SolderElectromigrationThermomigrationlIntermetallic Compound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究係探討覆晶無鉛銲錫接點經長時間通電後,介金屬化合物發生偏析聚集之成因。整個實驗共使用三種不同結構之試片,對上述介金屬化合物偏析(Segregation)行為進行機制之探討。其分別為連續觀察一對Sn0.7Cu覆晶銲錫接點內之Cu6Sn5,於電流密度1.0×104 A/cm2、150oC下的通電行為,以分析其偏析的過程。另外,藉由連續觀察Cu/Sn1.0Cu/Cu棒狀結構銲錫接點內的Cu6Sn5,探討其非等向性溶解(Anisotropic dissolution)行為與電子流方向之關係,並利用臨場(in situ)同步輻射XRD分析Sn0.8Cu銲錫薄帶內的Cu6Sn5在通電環境下之晶格變化,藉以探究電致再結晶(Electrorecrystalization)之機制。最後,藉由分析銲錫接點內熱遷移(Thermomigration)驅動力和電遷移(Electromigration)驅動力之相對關係,以解析Cu6Sn5再分佈偏析的位置。
實驗結果顯示,Sn0.7Cu覆晶銲錫接點內的Cu6Sn5,於通電環境下,會出現重新再分佈(Redistribution)的現象,其整個過程大致可分為三個階段,依序為 (1)基地內Cu6Sn5溶解, (2)溶解後被釋出的Cu原子往接點內之某特定方向進行遷移, (3) Cu6Sn5再次析出於相對溶解區域的另一側。
在通電環境下,基地內Cu6Sn5會因連續高密度的電子轟擊和動量轉移現象,造成原本在熱時效處理下不溶解的Cu6Sn5,順著電子流方向逐漸非等向性溶解(Anisotropic dissolution),整個溶解的過程呈現反應控制(Reaction control)機制。Cu6Sn5溶解後釋出的Cu原子會朝向熱遷移驅動力與電遷移驅動力之合力方向進行遷移,因此最終Cu6Sn5聚集於合力所指方向之終點,此再析出行為存在1.16小時的潛伏期,且由擴散控制(Diffusion control)機制所主導。

In this study, the mechanism of abnormal excessive accumulation of Cu6Sn5 at one side of flip chip solder joints rather than at the anode after electromigration test has been investigated. Three experimental methods are used in this research to thoroughly investigate the above mentioned phenomenon. Firstly, the microstructure evolution of current stressed Sn0.7Cu flip chip solder joints with the current density of 1×104 A/cm2, at 150℃ were observed consecutively at various time intervals, in order to investigate the process of segregation of Cu6Sn5. Secondly, the Cu/Sn1.0Cu/Cu rod-type solder joint specimen was investigated of the correlation between anisotropic dissolution behavior of Cu6Sn5 and direction of electron flow. Thirdly, the evolution of Cu6Sn5 lattice in response to the current stressing in the Sn0.8Cu solder strip was determined by in situ synchrotron radiation XRD for a detailed understanding of the mechanism of electrorecrystallization. Finally, we tried to analyze correlation between thermomigration and electromigration in current stressed solder joint to explain the position of Cu6Sn5 segregation.
The experimental results showed that Cu6Sn5 in the current stressed Sn0.7Cu flip chip specimen redistributed from the one side of solder joint to another side. The redistribution of Cu6Sn5 occurs through: (1)dissolution of Cu6Sn5, (2)migration of Cu atoms dissolved from Cu6Sn5, and (3)reprecipitation of Cu6Sn5.
Under current stressing, Cu6Sn5 IMC encountered heavy electron bombardment continuously from the accelerated electrons, which gave rise to the anisotropic dissolution of Cu6Sn5 in the direction of electron flow. The process of anisotropic dissolution was controlled by a reaction mechanism. The migration of Cu atoms dissolved from Cu6Sn5 was driven by the combined force of thermomigration and electromigration(FTM+EM), and thus segregation and reprecipitation of Cu6Sn5 occurred at the end where the combined force(FTM+EM) directed. The process of repreciptation was controlled by a reaction mechanism after an incubation period of 1.16 hours.

中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
致謝……………………………………………………………………IV
總目錄…………………………………………………………………V
表目錄…………………………………………………………………VII
圖目錄…………………………………………………………………VIII
第壹章 簡介………………………………………………………… 1
1-1覆晶接合技術和其面臨之議題介紹…………………………… 1
1-1-1覆晶接合技術介紹…………………………………………… 1
1-1-2目前面臨之議題……………………………………………… 3
1-2無鉛銲錫的發展和SnCu銲錫性質介紹………………………… 4
1-3電遷移及其對覆晶銲錫接點之影響…………………………… 7
1-3-1電遷移理論…………………………………………………… 7
1-3-2電遷移效應對覆晶銲錫接點之影響………………………… 11
1-4熱遷移效應對覆晶銲錫接點之影響…………………………… 16
1-4-1熱遷移對含鉛銲錫接點之影響……………………………… 16
1-4-2熱遷移對無鉛銲錫接點之影響……………………………… 19
1-5研究目的………………………………………………………… 19
第貳章 實驗方法與步驟…………………………………………… 21
2-1實驗構想………………………………………………………… 21
2-2覆晶Sn0.7Cu銲錫接點試片………………………………………23
2-2-1通電實驗……………………………………………………… 23
2-2-2熱遷移效應實驗……………………………………………… 24
2-2-3熱時效處理…………………………………………………… 24
2-2-4試片分析……………………………………………………… 24
2-3 Cu/SnCu/Cu棒狀結構銲錫接點試片………………………… 28
2-3-1通電實驗……………………………………………………… 28
2-3-2試片分析……………………………………………………… 28
2-4 Sn0.8Cu銲錫薄帶試片………………………………………… 31
2-4-1通電實驗……………………………………………………… 31
2-4-2熱時效處理…………………………………………………… 31
2-4-3試片X光繞射分析.…………………………………………… 34
第參章 結果與討論………………………………………………… 35
3-1未通電覆晶銲錫接點內Cu6Sn5之微觀結構觀察……………… 35
3-2通電中覆晶銲錫接點內Cu6Sn5之微觀結構觀察……………… 38
3-2-1電子流由上方晶片端流向下方基板端之接點A微觀結構變化………………………………………………………………………38
3-2-2電子流由下方基板端流向上方晶片端之接點B微觀結構變化………………………………………………………………………40
3-3基地內Cu6Sn5之溶解行為探討………………………………… 45
3-3-1電子流方向對Cu6Sn5電致極化溶解之關係和其動力學探討………………………………………………………………………45
3-3-2電致極化溶解之機制探討…………………………………… 48
3-4溶解後釋出的Cu原子之遷移機制探討………………………… 57
3-5基地內Cu6Sn5之再析出行為探討……………………………… 68
第肆章 結論………………………………………………………… 70
附錄A:電遷移驅動力(FEM)和熱遷移驅動力(FTM)大小比較之詳
細計算內容……………………………………………………………71
附錄B:Cu6Sn5電致極化溶解過程中未發現孔洞生成之解釋…… 73
參考文獻………………………………………………………………79

1. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1995, Chapter 1.
2. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1995, Chapter 3.
3. M. Pecht, Integrated Circuit, Hybrid, and Multichip module Package Design Guidelines, John Wiley & Sons, New York, USA, 1994, Chapter 7.
4. H. Ashassi-Sorkhabi, H. Dolati, N. Parvini-Ahmadi and J. Manzoori, “Electroless Deposition of Ni-Cu-P Alloy and Study of the Influences of Some Parameters on the Properties of Deposits, Applied Surface Science, Vol. 185, No. 3-4, 2002, pp. 155-160.
5. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics, Materials Science and Engineering R, Vol. 27, 2000, pp. 95-141.
6. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology, Materials Science and Engineering R, Vol. 38, No. 2, 2002, pp. 55-105.
7. Y. Li, K. S. Moon and C. P. Wong, “Electronics Without Lead, Science, Vol. 308, No. 3, 2005, pp. 1419-1420.
8. T. B. Massaiski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, Volume 1, 1986, p. 965.
9. N. C. Lee, “Getting Ready for Lead-Free Solders, Soldering and Surface Mount Technology, Vol. 9, 1997, pp. 65-69.
10. A. Z. Miric and A. Grusd, “Lead-Free Alloys, Soldering and Surface Mount Technology, Vol. 10, 1998, pp. 19-25.
11. R. E. Pratt, E. I. Stromswold and D.J. Quesnel, “Effect of Solid-State Intermetallic Growth on the Fracture Toughness of Cu/63Sn–37Pb Solder Joints, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 19, No. 1, 1996, pp 134-141.
12. J. R. Black, “Electromigration Failure Modes in Aluminum Metallization for. Semiconductor Devices, Proceedings of the IEEE, Vol. 57, No. 9, 1969, pp. 1587-94.
13. H. B. Huntington and A. R. Grone, “Current-Induced Marker Motion in Gold Wires, Journal of Physics and Chemistry of Solids, Vol. 20, 1961, pp. 76-87.
14. V. B. Fiks, “On the Mechanism of the Mobility of Ions in Metals, Soviet Physics, Solid State, Vol. 1, 1959, pp. 14-28.
15. A. S. Nowick and J. J. Burton, Diffusion in Solids : Recent Developments, Academic Press Inc., New York, 1975.
16. Y. C. Hu, Y. H. Lin, C. R. Kao and K. N. Tu, “Electromigration Failure in Flip Chip Solder Joints due to Rapid Dissolution of Copper, Journal of Materials Research, Vol. 18, No. 11, 2003, pp. 2544-2548.
17. C. T. Lin, Y. C. Chuang, S. J. Wang and C. Y. Liu, “Current Density Dependence of Electromigration-induced Flip-chip Cu Pad Consumption, Applied Physics Letter, Vol. 89, 2006, pp. 101906-1-101906-3.
18. H. Gan and K. N. Tu, “Polarity Effect of Electromigration on Kinetics of Intermetallic Compound Formation in Pb-Free Solder V-Groove Samples, Journal of Applied Physics, Vol. 97, 2005, pp. 063514-1-063514-10.
19. K. Chen, N. Tamura, M. Kunz, K. N. Tu and Y. S. Lai, “In Situ Measurement of Electromigration-induced Transient Stress in Pb-free Sn–Cu Solder Joints by Synchrotron Radiation Based X-ray Polychromatic Microdiffraction, Journal of Applied Physics, Vol. 106, 2009, pp. 023502-1-023502-4.
20. Y. C. Chen and D. Yang, “Failure Mechanisms of Solder Interconnects under Current Stressing in Advanced Electronic Packages, Progress in Materials Science, Vol. 55, 2010, pp. 428-475.
21. F. Ren, J. W. Nah, K. N. Tu, B. S. Xiong, L. H. Xu and H. L. Pang, “Electromigration Induced Ductile-to-Brittle Transition in Lead-free Solder Joints, Applied Physics Letter, Vol. 89, 2006, pp. 141914-1-141914-3.
22. S. H. Chiu, T. L. Shao, C. Chen, D. J. Yao and C. Y. Hsu, “Infrared Microscopy of Hot Spots Induced by Joule Heating in Flip-Chip SnAg Solder Joints under Accelerated Electromigration, Applied Physics Letter, Vol. 88, 2006, pp. 022110-1-022110-3.
23. H. Ye, C. Basaran, and D. Hopkins, “Thermomigration in Sn-Pb Solder Joints under Joule Heating during Electric Current Stressing, Applied Physics Letters, Vol. 82, No. 7, 2003, pp. 1045-1047.
24. A. T. Huang, A. M. Gusak, K. N. Tu and Y. S. Lai, “Thermomigration in SnPb Composite Flip Chip Solder Joints, Applied Physics Letters, Vol. 88, 2006, pp. 141911-1-141911-3.
25. D. Yang, B. Y. Wu, Y. C. Chan and K. N. Tu, “Microstructural Evolution and Atomic Transport by Thermomigration in Eutectic Tin-Lead Flip Chip Solder Joints, Journal of Applied Physics, Vol. 102, 2007, pp. 043502-1-043502-6.
26. F. Y. Ouyang and C. L. Kao, “In Situ Observation of Thermomigration of Sn Atoms to the Hot End of 96.5Sn-3Ag-0.5Cu Flip Chip Solder Joints, Journal of Applied Physics, Vol. 110, 2011, pp. 123525-1-123525-9.
27. H. Y. Hsiao and C. Chen, “Thermomigration in Pb-Free SnAg Solder Joint under Alternating Current Stressing, Applied Physics Letters, Vol. 94, No. 9, 2009, pp. 092107-1-092107-3.
28. H. Y. Chen, C. Chen and K. N. Tu, “Failure Induced by Thermomigration of Interstitial Cu in Pb-Free Flip Chip Solder Joints, Applied Physics Letters, Vol. 93, 2008, pp. 122103-1-122103-3.
29. M. F. Abdulhamid and C. Basaran, “Influence of Thermomigration on Lead-Free Solder Joint Mechanical Properties, Journal of Electronic Packaging, Vol. 131, 2009, pp. 011002-1-011002-12.
30. Y. W. Lin, J. H. Ke, H. Y. Chuang, Y. S. Lai, and C. R. Kao, “Electromigration in Flip Chip Solder Joints under Extra High Current Density, Journal of Applied Physics, Vol. 107, 2010, pp. 073516-1-073516-4.
31. K. Lee, K. S. Kim, Y. Tsukada, K. Suganuma, K Yamanaka, S. Kuritania and M. Ueshima, “Effects of the Crystallographic Orientation of Sn on the Electromigration of Cu/Sn-Ag-Cu/Cu Ball Joints, Journal of Materials Research, Vol. 26, No. 3, 2011, pp. 467-474.
32. H. Y. Chen and C. Chen, “Thermomigration of Cu–Sn and Ni–Sn Intermetallic Compounds during Electromigration in Pb-free SnAg Solder Joints, Journal of Materials Research, Vol. 26, No. 8, 2011, pp. 983-991.
33. 鄧雯菁,「錫銀覆晶銲錫隆點之電遷移研究」,國立成功大學材料所碩士論文,2011,pp. 36, 40, 50。
34. B.Y. Wu, M.O. Alam, Y.C. Chan and H.W. Zhong, “Joule Heating Enhanced Phase Coarsening in the Sn37Pb and Sn3.5Ag0.5Cu Solder Joints during Current Stressing, Journal of Materials Research, Vol. 37, No. 4, 2008, pp. 469-476.
35. David A. Porter, Kenneth E. Easterling and Mohamed Y. Sherif, Phase Transformations in Metals and Alloys, third ed., CRC Press Taylor & Francis Group, Florida, 2009, p. 137.
36. C. M. Tsai, Y. S. Lai, Y. L. Lin, C. W. Chang and C. R. Kao, “In-Situ Observation of Material Migration in Flip-Chip Solder Joints under Current Stressing, Journal of Electronic Materials, Vol. 35, No. 10, 2006, pp. 1781-1786.
37. K. J. Puttlitz and K. A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, Marcel Dekker, Inc., New York, 2004, p. 284.
38. H. P. R. Frederikse, R. J. Fields and A. Feldman, “Thermal and Electrical-Properties of Copper-Tin and Nickel-Tin Intermetallics, Journal of Applied Physics, Vol. 72, No. 7, 1992, pp. 2879-2882.
39. C. Chen, H. M. Tong and K. N. Tu, “Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints, Annual Review of Materials Research, Vol. 40, 2010, pp. 531-555.
40. B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im and P. S. Ho, “Investigation of Diffusion and Electromigration Parameters for Cu-Sn Intermetallic Compounds in Pb-Free Solders using Simulated Annealing, Acta Materialia, Vol. 55, 2007, pp. 2805-2814.
41. William D. Callister, Jr., Material Science and Engineering An Introduction, seventh ed., John Wiley & Sons, Inc., New York, 2007.
42. H. Y. Hsiao, S. W. Liang, M. F. Ku, C. Chen and D. J. Yao, “Direct Measurement of Hot-Spot Temperature in Flip-Chip Solder Joints under Current Stressing using Infrared Microscopy, Journal of Applied Physics, Vol. 104, 2008, pp. 033708-1-033708-6.
43. S. W. Liang, Y. W. Chang and C. Chen, “Three-dimensional Thermoelectrical Simulation in Flip-Chip Solder Joints with Thick Underbump Metallizations during Accelerated Electromigration Testing, Journal of Electronic Materials, Vol. 36, No. 2, 2007, pp. 159-167.
44. S. W. Liang, H. Y. Hsiao, C. Chen, L. H. Xu, K. N. Tu and Y.S. Lai, “Nonuniform and Negative Marker Displacements Induced by Current Crowding during Electromigration in Flip-Chip Sn-0.7Cu Solder Joints, Journal of Electronic Materials, Vol. 38, 2009, pp. 2443-2448.
45. Z. Mei, A. J. Sunwoo, and J. W. Morris, Jr., “Analysis of low-temperature intermetallic growth in copper-tin diffusion couples, Metallurgical and Materials Transactions A, Vol. 23, No. 3, 1992, pp. 857-864
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊