跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張曼蘋
研究生(外文):Man-PingChang
論文名稱:碳化鎢 / 氧化鋁奈米複合材料之製備及其微結構與機械性質之研究
論文名稱(外文):Preparation of Tungsten Carbide / Aluminum Oxide Nanocomposites and Investigation on Microstructure and Mechanical Properties
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:奈米複合材料氧化鋁碳化鎢火花電漿燒結
外文關鍵詞:NanocompositeAluminaTungsten carbideSpark Plasma Sintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用有機金屬化學氣相沉積法 ( MOCVD ) 配合噴流床 ( Spouted Bed ) 技術,將前驅物羰化鎢 ( W(CO)6 ) 裂解,並將裂解所得到的非晶質氧化鎢,經由甲烷-氫氣之混合氣體進行碳化熱處理,探討碳化熱處理過程中之相轉換機制,可知其相轉換過程為WO3 -〉 WC1-x -〉W2C -〉 WC。另外找出最佳碳化處理的溫度和時間,進而製備出碳化鎢 / 氧化鋁 ( WC / Al2O3 ) 奈米複合粉末。
將WC / Al2O3奈米複合粉末以火花電漿燒結法 ( Spark Plasma Sintering ) 燒結,分別在1250 oC至1450 oC五個溫度下形成WC / Al2O3奈米複合燒結體,當燒結溫度到達1400 oC時燒結體最為緻密。由STEM和TEM觀察,證實第二相奈米級的碳化鎢均勻的分布在基材氧化鋁的晶界上和晶粒內部,是屬於晶內和晶界型的奈米複合材料。另外燒結體的破斷面觀察到沿晶破壞與穿晶破壞,可知複合材料的韌性與強度均比單質氧化鋁高。由維式硬度與破壞韌性的測試結果發現,WC / Al2O3奈米複合燒結體之維式硬度可提升至33.2 GPa,破壞韌性值則可提升至5.79 MPa.m1/2,顯示第二相碳化鎢達到強化與韌化的效果。

Tungsten carbide was prepared by metal-organic chemical vapor deposition ( MOCVD ) method in a spouted bed and carbonized in the mixture of CH4 / H2 atmosphere in temperature range 700 - 900 oC. The phase transformation mechanism of carbonized heat treatment process is WO3 -〉 WC1-x -〉 W2C -〉 WC. Then identified the appropriated carbonized temperature and holding periods, and prepared the tungsten carbide / aluminum oxide ( WC / Al2O3 ) nano-composite powders.
WC / Al2O3 nanocomposites powder was sintered by SPS ( Spark Plasma Sintering ) at 1250 oC - 1450 oC. The successful densification of WC / Al2O3 nanocomposites were obtained at 1400 oC. STEM and TEM images confirmed that the WC / Al2O3 nanocomposites were inter / intra granular nanocomposites, which tungsten carbide were evenly distributed in the grain boundaries and inside the grains of alumina. The fracture modes of the WC / Al2O3 nanocomposites were intergranular fracture and transgranular fracture. From the Vickers hardness and fracture toughness test results, showing that WC / Al2O3 nanocomposite Vickers hardness is 33.2 GPa, and fracture toughness is 5.79 MPa‧m1/2. Confirmed that tungsten carbide improved the mechanical properties of nanocomposites.

總目錄

摘要.......................................................I
Abstract..................................................II
誌謝.....................................................III
總目錄.....................................................V
圖目錄..................................................VIII
表目錄...................................................XI
第一章 緒 論................................................1
1.1 前 言..............................................1
1.2 研究動機與重點......................................2
第二章 理論基礎.............................................4
2.1 奈米陶瓷複合材料....................................4
2.2 第二相對陶瓷基複合材料之影響..........................9
2.2.1 陶瓷基複合材料之強化機制........................9
2.2.2 陶瓷基複合材料之韌化機制.......................10
2.3 化學氣相沉積法與噴流床..............................16
2.3.1 噴流床技術與 MOCVD 之機制.....................18
2.4 碳化鎢相轉換之碳化熱處理.............................18
2.5 火花電漿燒結法.....................................21
2.5.1 火花電漿燒結法之原理..........................24
2.5.2 火花電漿燒結法之裝置..........................27
2.6 背向式散射電子繞射分析技術...........................27
第三章 實驗方法與步驟.......................................33
3.1 實驗設計...........................................33
3.2 裂解粉體及複合粉體之合成.............................33
3.2.1以噴流床進行有機金屬化學氣相沉積法...............33
3.2.2 實驗材料.....................................36
3.2.3裂解粉體和複合粉體之合成........................38
3.2.4 裂解粉末和複合粉體之碳化熱處理.................38
3.3 複合粉體之火花電漿燒結..............................38
3.4 碳化粉體和複合粉體之性質分析.........................41
3.4.1 碳化粉體之相分析..............................41
3.4.2 碳化粉體之微結構..............................45
3.4.3 碳化鎢粉末之穿透式電子顯微鏡觀察................45
3.5燒結體性質分析......................................45
3.5.1 密度和孔隙率測定..............................45
3.5.2 維式硬度測定.................................46
3.5.3 破壞韌性測定.................................46
3.5.4 燒結體之微結構觀察............................47
第四章 結果與討論...........................................48
4.1 裂解粉末之碳化熱處理................................48
4.1.1 裂解粉末之碳化反應............................48
4.1.2 碳化粉體的表面形態與微結構觀察.................49
4.1.3 碳化後粉體之相分析............................52
4.1.4 碳化後粉體之相轉換............................54
4.2 碳化鎢 / 氧化鋁奈米複合陶瓷..........................58
4.2.1 噴流床複合粉末之碳化熱處理.....................58
4.2.2 奈米複合陶瓷之相分析..........................58
4.2.3 奈米複合陶瓷之背向式散射電子繞射分析............60
4.2.4 奈米複合陶瓷之收縮行為........................60
4.2.5 奈米複合陶瓷之密度與孔隙率.....................65
4.2.6 奈米複合陶瓷之微結構觀察.......................69
4.2.7 奈米複合陶瓷之破斷模式觀察.....................69
4.3 燒結體之機械性質....................................75
第五章 結 論...............................................79
第六章 參考文獻............................................81

[1] S. Lio, M. Watanabe, M. Matsubara, and Y. Matsuo (1989), “Mechanical properties of alumina/ silicon carbide whisker composites, J. Am. Ceram. Soc., 72 (10), p1880.
[2] W.J. Tseng and P.D. Funkenbusch (1992), “Microstructure and
densification of pressureless-sintered Al2O3/Si3N4, J. Am. Ceram. Soc., 75 (5), p1171.
[3] Y.S. Chou, and D.J. Green (1992), “Silicon carbide platelet / alumina composites: I. effect of forming technique on platelet orientation, J. Am. Ceram. Soc., 75 (12), p3346.
[4] 陶瓷技術手冊 (下) (1994),經濟部技術處。
[5] K. Niihara (1991). “New design concept of structural ceramics-ceramic nanocomposites, J. Ceram. Soc. Jpn., 99, p974.
[6] W. Acchar, A.E. Martinelli, F.A. Vieira, and C.A.A. Cairo (2000), “Sintering behaviour of alumina–tungsten carbide composites, Mater. Sci. Eng., A, 284, p84–87.
[7] G. Y. Onada, Jr, and L.L. Hench. (1978), Ceramic processing before firing, Wiley: New York, p357-376.
[8] E.A. Pugar and P.E.D. Morgan (1984), “Coupled Grain Growth Effects in Al2O3/ 10 vol% ZrO2, J. Am. Ceram. Soc., 69, pC120.
[9] S. Morooka, A. Kobata, and K. Kusakabe (1991),Rate analysis of composite ceramic particles production by CVD reactions in a fluidized bed,AICHE Symp., Ser., 87, p32-37.
[10] K. Tsugeki, T. Kato, Y. Koyanagi, K. Kusakabe, and S.Morooka (1993), “Electconductivity of sintered bodies of α-Al2O3-TiN composite prepared by CVD reaction in a fluidized bed, J. Mater. Sci., 28, p3168.
[11] B.J. Wood, A. Sanjurjo, G.T. Tong, and S.E. Swider (1991), Coating particles by chemical vapor deposition in fluidized bed reactors, Sur. Coat. Tech., 49, p228.
[12] T. Ohji, Y.K. Jeong, Y.H. Choa, and K. Niihara (1998), “Strengthening and Toughening Mechanisms of Ceramic Nanocomposites, J. Am. Ceram. Soc., 81, p1453.
[13] T. Ohji, Y.K. Jeong, T. Hirano, A. Nakahira and K. Niihara (1996), “Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites, J. Am. Ceram. Soc., 79, p33.
[14] B. Basu, T. Venkateswaran, and D. Y. Kim (2006), “Microstructure and Properties of Spark Plasma-Sintering ZrO2-ZrB2 Nanoceramic Composites, J. Am. Ceram. Soc., 89, p2405.
[15] C. Z (1948), “Grains, phases, and interfaces: an interpretation of microstructure, Trans. Am. Inst. Min. Metall. Eng., 175, p15.
[16] N. J. Petch (1953), “Cleavage strength of polycrystals, J. Iron and Steel Inst., 174, p25.
[17] S.M. Choi and H. Awaji (2005), “Nanocomposites-a new material design concept, Sci. Tech. Adv. Mat., 6, p2.
[18] 王世敏、許祖勛、傅晶 (2001),奈米材料製備技術,化學工業出版社,北京。
[19] K.T. Faber and A.G. Evans (1983), “Crack deflection process-I. theory, Acta Metall., 31, p565.
[20] K.T. Faber and AG..Evans (1983), “Crack deflection process-II. Theory, Acta Metall., 31, p577.
[21] A.G. Evans (1972), “The strength of brittle materials containing second phase dispersions, Philos. Mag., 26. p1327.
[22] A.G. Evans and K.T. Faber (1984), “Crack-growth resistance of microcracking brittle materials, J. Am. Ceam. Soc., 69, p255.
[23] K. Tsugeki, T. Kato, Y. Koyanagi, K. Kusakabe, and S. Morooka (1993), “Electconductivity of sintered bodies of α-Al2O3-TiN composite prepared by CVD reaction in a fluidized bed, J. Mater. Sci., 28, p3168.
[24] B. Hua, and C. Li (1999), “Production and characterization of nanocrystalline SnO2 films on Al2O3 agglomerates by CVD in a fluidized bed, Mat. Chem. Phy., 59, p130.
[25] D. Kunii and O. Levenspiel (1997), “Transient heat transfer during heating of spherical particles in a fluidized bed, Fluidization engineering, Huntington, N.Y, p195-223.
[26] 錢建嵩 (1992),流體化床技術,高立圖書有限公司。
[28] W. Hieber, E. Romberg, and Z. Anorg (1935), “Über Metallcarbonyle, Allg. Chem., 221, p332.
[29] M.H. Lo and W.C. J. Wei (1997),Analysis of (Cr, Mo) oxycarbide films grown on stainless steel via metalloorganic chemical vapor deposition, J. Am. Ceram. Soc., 80, p886.
[30] C.J. Lin, C.C. Yang and W.C. J. Wei (1999) “Processing and microstructure of nano-Mo/Al2O3 composites from MOCVD and fluidized bed, Nanostruct. Mater., 11, p1361.
[31] K. Madhav Reddy, T.N. Rao, and J. Joardar (2001), Stability of nanostructuredW-C phases during carburization of WO3, Mater. Chem. Phys., 128, p121-126.
[32] A. Kumar, K. Singh, and O.P. Pandey (2009), Reduction of WO3 to nano-WC by thermo-chemical reaction route, Physica E, 41, p677–684.
[33] M. Tokia, “Mechanism of Spark Plasma Sintering, Sumitomo Coal Mining Company, Ltd., East Bldg. 108, Kanagawa Science Park KSP.
[34] M. Tokia (1993), “Trends in Advanced SPS Spark Plasma Sintering Systems and Technology, J.Soc. Pow. Tech. Jap., 30, p790.
[35] M. N. Alam, M. Blackman, and D. W. Pashley (1954), “High-Angle Kikuchi Patterns, Proc. R. Soc. Lond. A, 221,p 224-242.
[36] J. A. Venables and C. J. Harland (1972), Electron back-scattering patterns-A new technique for obtaining crystallographic information in the scanning electron microscope, Philos. Mag., 27, p1193-1200.
[37] 陳志慶 (2012), 「背向散射電子繞射技術的空間及角解析度之探討」,國立成功大學材料科學及工程研究所博士論文。
[38] D. Zhang, L. Zhang, J. Guo, and W.H. Tuan (2006), “Direct evidence on temperature variation whthin ceramic powder compacts during pulse electric current sintering, J. Am. Ceram. Soc., 89, p689.
[39] X. Wang, S.R. Casolco, G. Xu, and J.E. Garay (2007), “Finite element modeling of electric current-activated sintering:The effect of coupled electrical potential temperature and stress, Acta Mater., 55, p3611.
[40] A.G. Evans (1976), “Fracture toughness determination by indentation, J. Am. Ceram. Soc., 59, p371.
[41] T. Isobe, K. Daimon, T. Sato, T. Matsubara, Y. Hikichi, and T. Ota (2008), “Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties, Ceram. Int., 34, p213.
[42] D. Gogova, K. Gesheva, A. Veneva (1998), “CVD–WC and WCxNy diffusion barrier coatings on WC/Co metalloceramics, Mater. Lett., 35(5–6), p351-356.
[43] V. Kumar, Z. Zakfang, S.I. Wright, and M.M. Nowell (2006), An analysis of grain boundaries and grain growth in cemented tungsten carbide using orientation imaging microscopy, Metall. Mater. Trans. A , 37(3) , p599-607.
[44] D. Harbec, J.L. Meunier (2011), Growth of carbon nanotubes above the peritectic temperature of tungsten metal catalyst, CARBON, 49, p2206-2215.
[45] P. Gustafson (1986), “Thermodynamic Properties of the Co-W-C System, Mater. Sci. Technol, 2, p653.
[46] Wright, S. I., and Nowell, M. M. (2006). “EBSD image quality mapping. Microscopy Microanalysis, Microsc. Microanal.,12, p72-84.
[47] 劉柏宗 (2010),「利用噴流床製備碳化鉻/氧化鋁奈米複合材料及火花電漿燒結體之微結構與機械性質研究」,國立成功大學材料科學及工程研究所碩士論文。
[48] J. Liu and P. Darrell Qwnby (1991), Boron Carbide Reinforced Alumina Composites, J.Am Ceram. Soc., 74, p674.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top