|
[1]鋼鐵材料設計與應用: 中國礦冶工程學會 財團法人中鋼集團教育基金會, 2009. [2]Y. Sahai and T. Emi, Tundish technology for clean steel production. Hackensack, NJ: World Scientific, 2008. [3]W. R. Irving, Continuous casting of steel London: Institute of Materials, 1993. [4]L. F. Zhang and B. G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 37, pp. 733-761, 2006. [5]L. F. Zhang and W. Pluschkell, Nucleation and growth kinetics of inclusions during liquid steel deoxidation, Ironmaking & Steelmaking, vol. 30, pp. 106-110, 2003. [6]T. Cosgrove, Colloid Science: Principles, Methods and Applications, 2nd ed.: John Wiley & Sons Ltd, 2010. [7]P. G. Saffman and J. S. Turner, On the collision of drops in turbulent clouds, Journal of Fluid Mechanics, vol. 1, pp. 16-30, 1956. [8]R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen, and B. Gommers, Non-metallic inclusions in aluminium killed steels, Ironmaking & Steelmaking, vol. 29, pp. 437-444, 2002. [9]R. Rastogi and A. W. Cramb, Inclusion Formation and Agglomeration in Aluminum Killed Steels, 84 th Steelmaking Conference Proceedings, vol. 84, pp. 789-829, 2001. [10]L. F. Zhang, B. Rietow, B. G. Thomas, and K. Eakin, Large inclusions in plain-carbon steel ingots cast by bottom teeming, ISIJ International, vol. 46, pp. 670-679, 2006. [11]F. Meng, J. Wang, E.-H. Han, and W. Ke, The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water, Corrosion Science, vol. 52, pp. 927-932, 2010. [12]C. Wang, H. Gao, Y. Dai, X. Ruan, J. Wang, and B. Sun, Grain Refining of 409L Ferritic Stainless Steel Using Fe-Ti-N Master Alloy, Metallurgical and Materials Transactions A, vol. 41, pp. 1616-1620, 2010. [13]L. K. Bigelow and M. C. Flemings, Sulfide inclusions in steel, Metallurgical Transactions B vol. 6B, pp. 275-283, 1975. [14]C. E. Sims and F. B. Dahle, Effect of Aluminum on the Properties of Medium-Carbon Cast Steel, Transactions of the American Foundrymen's Association, vol. 46, pp. 65-132, 1938. [15]H. Fredriksson and M. Hillert, On the formation of manganese sulphide inclusions in steel, Scandinavian Journal of Metallurgy, vol. 2, pp. 125-145, 1973. [16]H. Fredriksson and M. Hillert, Eutectic and monotectic formation of MnS in steel and cast iron, Journal of the Iron and Steel Institute, vol. 209, pp. 109-113, 1971. [17]W. Dahl, H. Hengstenberg, and D. Düren, Stahl Eisen, vol. 86, pp. 782-95, 1966. [18]S. Marich and R. Player, Sulfide Inclusions in Iron, Metallurgical Transactions, vol. 1, pp. 1853-1857, 1970. [19]K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa, The Control of the Morphology of MnS Inclusions in Steel during Solidification, ISIJ International, vol. 35, pp. 402-408, 1995. [20]R. Kiessling and N. Lange, Non-metallic Inclusions In Steel, 2nd ed. London: Metals Society, 1978. [21]E. M. Levin, C. R. Robbins, H. F. McMurdie, and American Ceramic Society, Phase Diagrams for Ceramists vol. I-13: Columbus, Ohio: American Ceramic Society, 1964-2001. [22]O. Ericsson, An Experimental Study of a Liquid Steel Sampling Process, Industrial Engineering and Management KTH School, 2010. [23]A. Karasev and H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass pct Ni-M (M = Si, Ti, Al, Zr, and Ce) alloy, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 30, pp. 259-270, 1999. [24]Y. Yoshida and Y. Funahashi, On the Extraction and Size Distribution Determination of Large Non-metallic Inclusions in Steel by Slime Method, Transactions ISIJ, vol. 16, pp. 628-636, 1976. [25]L. Zhang and B. G. Thomas, Inclusion Investigation during Clean Steel Production at Baosteel, ISS Tech 2003 (Conf. Proc.), Indianapolis, IN, USA, vol. 2003, pp. 141-156, 2003. [26]H.Yasuhara, S. Makoto, and S.Nabeshima, Measurement for particle size distribution in high-C Si-Mn killed steel, CAMP-ISIJ, vol. 5, p. 785, 1996. [27]B. K. Cho and J. M. K. Irudayaraj, Foreign object and internal disorder detection in food materials using noncontact ultrasound imaging, Journal of Food Science, vol. 68, pp. 967-974, 2003. [28]Y. Matsuoka, Y. Nakamura, and Y. Naganuma, Development of nonmetallic inclusion detection system by magnetic leakage flux method, Nippon Steel Technical Report, pp. 63-69, 1991. [29]B. Harrer and J. Kastner, X-ray Microtomography: Characterisation of Structures and Defect Analysis, Advanced Structured Materials, vol. 10, pp. 119-149, 2011. [30]M. G. Silk, Defect detection and sizing in metals using ultrasound, International Materials Reviews, vol. 27, pp. 28-50, 1982. [31]H. Takada, Y. Tomura, M. Aratani, T. Yamasaki, and T. Sasaki, On-Line Detection System for Internal Flaws in As-Hot-Rolled Steel Strip Using Ultrasonic Probe Array, Materials Transactions, vol. 52, pp. 531-538, 2011. [32]H. Tanabe, Y. Matsufuji, J. Yotsuji, S. Ando, K. Nishifuji, and M. Inaba, Technology of Detecting Minute Inclusions in Light Gauge Steel Sheets Using the Magnetic Leakage-Flux Method, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 79, pp. 841-846, 1993. [33]ASTM International, ASTM E45-05 Standard Test Methods for Determining the Inclusion Content of Steel, ed: ASTM International, 2005. [34]Deutsches Institut für Normung, DIN 50602 Microscopic examination of special steels using standard diagrams to assess the content of non-metallic inclusions, ed: Deutsches Institut für Normung, 1985. [35]Japanese Industrial Standard, JIS G 0555 Microscopic testing method for the non-metallic inclusions in steel, ed: Japanese Standards Association, 2003. [36]I. N. Mccave, R. J. Bryant, H. F. Cook, and C. A. Coughanowr, Evaluation of a Laser-Diffraction-Size Analyzer for Use with Natural Sediments, Journal of Sedimentary Petrology, vol. 56, pp. 561-564, 1986. [37]N. G. Stanley-Wood and R. W. Lines, Particle Size Analysis. Cambridge: Royal Society of Chemistry, 1992. [38]S. Kou, Welding metallurgy. New York: John Wiley & Sons, Inc., 1987. [39]I. Hrivnák, Theory of weldability of metals and alloys. Amsterdam: Elsevier Science, 1992. [40]D. J. Abson and R. J. Pargeter, Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C–Mn steel fabrications, International Metals Reviews, vol. 31, pp. 141-196, 1986. [41]O. Grong and D. K. Matlock, Microstructural development in mild and low-alloy steel weld metals, International Metals Reviews, vol. 31, pp. 27-48, 1986. [42]Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto, Improvement in HAZ Toughness of Steel by Tin-Mns Addition, ISIJ International, vol. 34, pp. 829-835, 1994. [43]Z. Zhang and R. A. Farrar, Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals, Materials Science and Technology, vol. 12, pp. 237-260, 1996. [44]H. Mabuchi, R. Uemori, and M. Fujioka, The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ International, vol. 36, pp. 1406-1412, 1996. [45]A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, and H. Yasui, Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles, Shinnittetsu Giho, vol. 380, pp. 2-5, 2004. [46]Robert E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, 3rd ed. Boston: PWS-Kent, 1992. [47]S. Matsuda and N. Okumura, Effect of Dispersion State of TiN on the Austenite Grain Size of Low-Carbon Low Alloy Steels, The Iron and Steel Institute of Japan, vol. 62, pp. 1209-1218, 1976. [48]R. A. Ricks, P. R. Howell, and G. S. Barritte, The Nature of Acicular Ferrite in Hsla Steel Weld Metals, Journal of Materials Science, vol. 17, pp. 732-740, 1982. [49]G. A. Chadwick, Metallography of phase transformations. London: Butterworths, 1972. [50]I. Madariaga and I. Gutierrez, Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel, Acta Materialia, vol. 47, pp. 951-960, 1999. [51]O. M. Akselsen, Diffusion Bonding of Ceramics, Journal of Materials Science, vol. 27, pp. 569-579, 1992. [52]S. H. Zhang, N. Hattori, M. Enomoto, and T. Tarui, Ferrite nucleation at ceramic/austenite interfaces, ISIJ International, vol. 36, pp. 1301-1309, 1996. [53]T. B. Massalski and H. Okamoto, Binary alloy phase diagrams, 2nd ed.: ASM International 1990. [54]Z. Chen, M. H. Loretto, and R. C. Cochrane, Nature of Large Precipitates in Titanium-Containing Hsla Steels, Materials Science and Technology, vol. 3, pp. 836-844, 1987. [55]M. Prikryl, A. Kroupa, G. C. Weatherly, and S. V. Subramanian, Precipitation behavior in a medium carbon, Ti-V-N microalloyed steel, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 27, pp. 1149-1165, 1996. [56]W. Yan, Y. Y. Shan, and K. Yang, Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 37A, pp. 2147-2158, 2006. [57]T. H. North, H. B. Bell, A. Koukabi, and I. Craig, Notch Toughness of Low Oxygen Content Submerged Arc Deposits, Welding journal, vol. 58, pp. 343s-354s, 1979. [58]K. Inoue, I. Ohnuma, H. Ohtani, K. Ishida, and T. Nishizawa, Solubility product of TiN in austenite, ISIJ International, vol. 38, pp. 991-997, 1998. [59]D. P. Fairchild, D. G. Howden, and W. A. T. Clark, The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 31, pp. 641-652, 2000. [60]K. Yamamoto, T. Hasegawa, and J. Takamura, Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels, ISIJ International, vol. 36, pp. 80-86, 1996. [61]J. L. Lee and Y. T. Pan, Effect of Sulfur-Content on the Microstructure and Toughness of Simulated Heat-Affected Zone in Ti-Killed Steels, Metallurgical Transactions A-Physical Metallurgy and Materials Science, vol. 24, pp. 1399-1408, 1993. [62]B. L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metallurgical Transactions, vol. 1, pp. 1987-1995, 1970. [63]H. B. Yin, H. Shibata, T. Emi, and M. Suzuki, 'In-situ' observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ International, vol. 37, pp. 936-945, 1997. [64]S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi, Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 31, pp. 1013-1021, 2000. [65]S. Kimura, K. Nakajima, and S. Mizoguchi, Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 32, pp. 79-85, 2001. [66]J. Ma, D. Zhan, Z. Jiang, and J. He, Effect of Ti, Al and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel Advanced Materials Research, vol. 79-82, pp. 143-146, 2009. [67]F. Chai, C. F. Yang, H. Su, Y. Q. Zhang, and Z. Xu, Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone, Journal of Iron and Steel Research International, vol. 16, pp. 69-74, 2009. [68]K. Guthmann, Günstige Giesstemperatur im Vergleich zum Erstarrungspunkt von Eisen- und Stahlschmelzen, Stahl und Eisen, vol. 71, pp. 399-402, 1951. [69]E. Takeuchi and J. K. Brimacombe, Effect of Oscillation-Mark Formation on the Surface Quality of Continuously Cast Steel Slabs, Metallurgical Transactions B-Process Metallurgy, vol. 16, pp. 605-625, 1985. [70]B. Hallstedt, Thermodynamic Assessment of the System Mgo-Al2o3, Journal of the American Ceramic Society, vol. 75, pp. 1497-1507, 1992. [71]G. J. W. Kor and Turkdoga.Et, Sulfides and Oxides in Fe-Mn Alloys .3. Formation of Oxysulfides during Freezing of Steel, Metallurgical Transactions, vol. 3, pp. 1269-1278, 1972. [72]H. Itoh, M. Hino, and S. Ban-Ya, Thermodynamics on the formation of non-metallic inclusion of spinel (MgO-Al2O3) in liquid steel, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 84, pp. 85-90, 1998. [73]R. Dekkers, Non-metallic inclusions in liquid steel ladles, Katholieke Universiteit Leuven, Leuven, Belgium, 2002. [74]L. F. Zhang and B. G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ International, vol. 43, pp. 271-291, 2003. [75]H. Fujimura, S. Tsuge, Y. Komizo, and T. Nishizawa, Effect of oxide composition on solidification structure of ti added ferritic stainless steel, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 87, pp. 707-712, 2001. [76]P. Kanjilal, S. K. Majumdar, and T. K. Pal, Prediction of acicular ferrite from flux ingredients in submerged arc weld metal of C-Mn steel, ISIJ International, vol. 45, pp. 876-885, 2005. [77]D. S. Sarma, A. V. Karasev, and P. G. Jonsson, On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels, ISIJ International, vol. 49, pp. 1063-1074, 2009. [78]A. R. Mills, G. Thewlis, and J. A. Whiteman, Nature of Inclusions in Steel Weld Metals and Their Influence on Formation of Acicular Ferrite, Materials Science and Technology, vol. 3, pp. 1051-1061, 1987.
|