跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅新傑
研究生(外文):Sin-JieLuo
論文名稱:結構用鋼胚中介在物之研究
論文名稱(外文):Study on Inclusions in Structure Steels
指導教授:郭瑞昭
指導教授(外文):Jui-Chao Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:119
中文關鍵詞:介在物結構用鋼背向散射電子繞射
外文關鍵詞:Inclusionstructural steelEBSD
相關次數:
  • 被引用被引用:8
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
近年來現代建設朝高層化、大跨距發展,因此需要高強度與高厚度的結構鋼板,此外,在接合過程中為了提高銲接效率,必須在銲接過程中導入大量的熱量,使得傳統需要數道銲接的程序,只需一道銲接即可完成。但高入熱量銲接的過程,會增加銲接熱影響區的範圍及晶粒粗大,造成韌性及強度的下降。針對高入熱量銲接用鋼,最有效方式藉由介在物的改質,提升其強度及韌性。
  本研究針對三種結構用鋼進行介在物的分析,其中包括SM570、SS400及添加鎂的SS400。介在物的種類、尺寸、數量以及與肥粒鐵間介面關係,介在物分析探討以場發射式SEM觀察介在物形貌,而以SEM-EDS分析介在物化學成分,搭配背向式散射電子繞射儀(EBSD)鑑定介在物相結構,以及介在物與肥粒鐵的晶體方位,此外同時結合SEM的BEI影像及EDS成分分析,進行影像分析,統計介在物的尺寸及數量。
  實驗結果顯示,SM570鋼中的介在物主要為氮化鈦(TiN)、γ-氧化鋁(Al2O3)、α-硫化錳(MnS)等三類,SS400鋼中介在物為γ-氧化鋁(Al2O3)、α-硫化錳(MnS)等二類,添加鎂的SS400鋼中介在物為氧化鎂鋁(MgO•Al2O3)、α-硫化錳(MnS)等二類。介在物的大小主要集中在直徑1μm以下,而且大部分為單相的硫化錳。氮化鈦及硫化錳與肥粒鐵間為連續整合及半連續整合介面,而氧化鋁及氧化鎂鋁的與肥粒鐵間匹配度為半連續整合及不連續整合的介面。
In recent years modern constructions were developed high-rise and large span. For the purpose of getting high strength and thickness steel plate, and for high welding efficiency to increase welding heat input. But high heat input welding process, which will make the heat-affected zone (HAZ) of coarse grains, resulting in toughness and strength decrease. Modified by inclusions of high heat input welding steel, which was the most effective way to enhance its strength and toughness.
This study focused on structure steel inclusion analysis, which was including SM570, SS400, and the magnesium addition of SS400 steels. Analyze the types, sizes, and numbers of inclusions, as well as the interface relationship between inclusion and ferrite. The microstructures of inclusions were observed by field emission SEM. The chemical compositions of the inclusions were analyzed by SEM-EDS. Identified the inclusions structure and analyzed inclusions and ferrite orientation by electron backscatter diffraction (EBSD). Combine the SEM-BEI images and EDS were analyzed through the image analysis software to determine the size and numbers of inclusions.
The inclusions of SM570 steel mainly have titanium nitride, γ-alumina, and α-manganese sulfide. The inclusions of SS400 steel have γ-alumina, and α-manganese sulfide. The inclusions of SS400+Mg steel have magnesium aluminum oxide (MgO•Al2O3), and α-manganese sulfide. According to the size distribution statistics, the inclusions were mainly concentrated below diameter 1μm, and most were single-phase manganese sulfide. Titanium nitride and manganese sulfide have coherent/semi-coherent interface, and the alumina and magnesium aluminum oxide have semi-coherent/incoherent interface.
中文摘要I
AbstractIII
誌謝IV
總目錄VI
表目錄VIII
圖目錄IX
第一章 前言1
第二章 文獻回顧3
2.1 鋼鐵介在物3
2.1.1 介在物的來源 3
2.1.2 介在物型態7
2.1.3 介在物物理性質14
2.1.4 介在物統計分析15
2.2 介在物對銲接性質的影響20
2.2.1銲接組織20
2.2.2介在物對銲接組織的影響23
2.2.3介在物對銲接機械性質的影響29
第三章 材料與實驗步驟38
3.1 實驗材料與試片製備38
3.1.1試片取樣位置38
3.1.2試片處理39
3.2 介在物分析42
3.2.1介在物成分分析42
3.2.2 EBSD分析42
3.3 介在物形貌分析43
3.4 介在物統計分析43
第四章 實驗結果46
4.1 介在物成分與結構分析46
4.2 介在物形貌分析58
4.3 介在物統計分析68
4.4 介在物方位分析75
第五章 討論81
5.1 鋼中介在物形成之探討81
5.2 各鋼種中介在物之比較86
5.3 介在物對誘發肥粒鐵之探討90
第六章 結論111
參考文獻112
[1]鋼鐵材料設計與應用: 中國礦冶工程學會 財團法人中鋼集團教育基金會, 2009.
[2]Y. Sahai and T. Emi, Tundish technology for clean steel production. Hackensack, NJ: World Scientific, 2008.
[3]W. R. Irving, Continuous casting of steel London: Institute of Materials, 1993.
[4]L. F. Zhang and B. G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 37, pp. 733-761, 2006.
[5]L. F. Zhang and W. Pluschkell, Nucleation and growth kinetics of inclusions during liquid steel deoxidation, Ironmaking & Steelmaking, vol. 30, pp. 106-110, 2003.
[6]T. Cosgrove, Colloid Science: Principles, Methods and Applications, 2nd ed.: John Wiley & Sons Ltd, 2010.
[7]P. G. Saffman and J. S. Turner, On the collision of drops in turbulent clouds, Journal of Fluid Mechanics, vol. 1, pp. 16-30, 1956.
[8]R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen, and B. Gommers, Non-metallic inclusions in aluminium killed steels, Ironmaking & Steelmaking, vol. 29, pp. 437-444, 2002.
[9]R. Rastogi and A. W. Cramb, Inclusion Formation and Agglomeration in Aluminum Killed Steels, 84 th Steelmaking Conference Proceedings, vol. 84, pp. 789-829, 2001.
[10]L. F. Zhang, B. Rietow, B. G. Thomas, and K. Eakin, Large inclusions in plain-carbon steel ingots cast by bottom teeming, ISIJ International, vol. 46, pp. 670-679, 2006.
[11]F. Meng, J. Wang, E.-H. Han, and W. Ke, The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water, Corrosion Science, vol. 52, pp. 927-932, 2010.
[12]C. Wang, H. Gao, Y. Dai, X. Ruan, J. Wang, and B. Sun, Grain Refining of 409L Ferritic Stainless Steel Using Fe-Ti-N Master Alloy, Metallurgical and Materials Transactions A, vol. 41, pp. 1616-1620, 2010.
[13]L. K. Bigelow and M. C. Flemings, Sulfide inclusions in steel, Metallurgical Transactions B vol. 6B, pp. 275-283, 1975.
[14]C. E. Sims and F. B. Dahle, Effect of Aluminum on the Properties of Medium-Carbon Cast Steel, Transactions of the American Foundrymen's Association, vol. 46, pp. 65-132, 1938.
[15]H. Fredriksson and M. Hillert, On the formation of manganese sulphide inclusions in steel, Scandinavian Journal of Metallurgy, vol. 2, pp. 125-145, 1973.
[16]H. Fredriksson and M. Hillert, Eutectic and monotectic formation of MnS in steel and cast iron, Journal of the Iron and Steel Institute, vol. 209, pp. 109-113, 1971.
[17]W. Dahl, H. Hengstenberg, and D. Düren, Stahl Eisen, vol. 86, pp. 782-95, 1966.
[18]S. Marich and R. Player, Sulfide Inclusions in Iron, Metallurgical Transactions, vol. 1, pp. 1853-1857, 1970.
[19]K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa, The Control of the Morphology of MnS Inclusions in Steel during Solidification, ISIJ International, vol. 35, pp. 402-408, 1995.
[20]R. Kiessling and N. Lange, Non-metallic Inclusions In Steel, 2nd ed. London: Metals Society, 1978.
[21]E. M. Levin, C. R. Robbins, H. F. McMurdie, and American Ceramic Society, Phase Diagrams for Ceramists vol. I-13: Columbus, Ohio: American Ceramic Society, 1964-2001.
[22]O. Ericsson, An Experimental Study of a Liquid Steel Sampling Process, Industrial Engineering and Management KTH School, 2010.
[23]A. Karasev and H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass pct Ni-M (M = Si, Ti, Al, Zr, and Ce) alloy, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 30, pp. 259-270, 1999.
[24]Y. Yoshida and Y. Funahashi, On the Extraction and Size Distribution Determination of Large Non-metallic Inclusions in Steel by Slime Method, Transactions ISIJ, vol. 16, pp. 628-636, 1976.
[25]L. Zhang and B. G. Thomas, Inclusion Investigation during Clean Steel Production at Baosteel, ISS Tech 2003 (Conf. Proc.), Indianapolis, IN, USA, vol. 2003, pp. 141-156, 2003.
[26]H.Yasuhara, S. Makoto, and S.Nabeshima, Measurement for particle size distribution in high-C Si-Mn killed steel, CAMP-ISIJ, vol. 5, p. 785, 1996.
[27]B. K. Cho and J. M. K. Irudayaraj, Foreign object and internal disorder detection in food materials using noncontact ultrasound imaging, Journal of Food Science, vol. 68, pp. 967-974, 2003.
[28]Y. Matsuoka, Y. Nakamura, and Y. Naganuma, Development of nonmetallic inclusion detection system by magnetic leakage flux method, Nippon Steel Technical Report, pp. 63-69, 1991.
[29]B. Harrer and J. Kastner, X-ray Microtomography: Characterisation of Structures and Defect Analysis, Advanced Structured Materials, vol. 10, pp. 119-149, 2011.
[30]M. G. Silk, Defect detection and sizing in metals using ultrasound, International Materials Reviews, vol. 27, pp. 28-50, 1982.
[31]H. Takada, Y. Tomura, M. Aratani, T. Yamasaki, and T. Sasaki, On-Line Detection System for Internal Flaws in As-Hot-Rolled Steel Strip Using Ultrasonic Probe Array, Materials Transactions, vol. 52, pp. 531-538, 2011.
[32]H. Tanabe, Y. Matsufuji, J. Yotsuji, S. Ando, K. Nishifuji, and M. Inaba, Technology of Detecting Minute Inclusions in Light Gauge Steel Sheets Using the Magnetic Leakage-Flux Method, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 79, pp. 841-846, 1993.
[33]ASTM International, ASTM E45-05 Standard Test Methods for Determining the Inclusion Content of Steel, ed: ASTM International, 2005.
[34]Deutsches Institut für Normung, DIN 50602 Microscopic examination of special steels using standard diagrams to assess the content of non-metallic inclusions, ed: Deutsches Institut für Normung, 1985.
[35]Japanese Industrial Standard, JIS G 0555 Microscopic testing method for the non-metallic inclusions in steel, ed: Japanese Standards Association, 2003.
[36]I. N. Mccave, R. J. Bryant, H. F. Cook, and C. A. Coughanowr, Evaluation of a Laser-Diffraction-Size Analyzer for Use with Natural Sediments, Journal of Sedimentary Petrology, vol. 56, pp. 561-564, 1986.
[37]N. G. Stanley-Wood and R. W. Lines, Particle Size Analysis. Cambridge: Royal Society of Chemistry, 1992.
[38]S. Kou, Welding metallurgy. New York: John Wiley & Sons, Inc., 1987.
[39]I. Hrivnák, Theory of weldability of metals and alloys. Amsterdam: Elsevier Science, 1992.
[40]D. J. Abson and R. J. Pargeter, Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C–Mn steel fabrications, International Metals Reviews, vol. 31, pp. 141-196, 1986.
[41]O. Grong and D. K. Matlock, Microstructural development in mild and low-alloy steel weld metals, International Metals Reviews, vol. 31, pp. 27-48, 1986.
[42]Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto, Improvement in HAZ Toughness of Steel by Tin-Mns Addition, ISIJ International, vol. 34, pp. 829-835, 1994.
[43]Z. Zhang and R. A. Farrar, Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals, Materials Science and Technology, vol. 12, pp. 237-260, 1996.
[44]H. Mabuchi, R. Uemori, and M. Fujioka, The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ International, vol. 36, pp. 1406-1412, 1996.
[45]A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, and H. Yasui, Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles, Shinnittetsu Giho, vol. 380, pp. 2-5, 2004.
[46]Robert E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, 3rd ed. Boston: PWS-Kent, 1992.
[47]S. Matsuda and N. Okumura, Effect of Dispersion State of TiN on the Austenite Grain Size of Low-Carbon Low Alloy Steels, The Iron and Steel Institute of Japan, vol. 62, pp. 1209-1218, 1976.
[48]R. A. Ricks, P. R. Howell, and G. S. Barritte, The Nature of Acicular Ferrite in Hsla Steel Weld Metals, Journal of Materials Science, vol. 17, pp. 732-740, 1982.
[49]G. A. Chadwick, Metallography of phase transformations. London: Butterworths, 1972.
[50]I. Madariaga and I. Gutierrez, Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel, Acta Materialia, vol. 47, pp. 951-960, 1999.
[51]O. M. Akselsen, Diffusion Bonding of Ceramics, Journal of Materials Science, vol. 27, pp. 569-579, 1992.
[52]S. H. Zhang, N. Hattori, M. Enomoto, and T. Tarui, Ferrite nucleation at ceramic/austenite interfaces, ISIJ International, vol. 36, pp. 1301-1309, 1996.
[53]T. B. Massalski and H. Okamoto, Binary alloy phase diagrams, 2nd ed.: ASM International 1990.
[54]Z. Chen, M. H. Loretto, and R. C. Cochrane, Nature of Large Precipitates in Titanium-Containing Hsla Steels, Materials Science and Technology, vol. 3, pp. 836-844, 1987.
[55]M. Prikryl, A. Kroupa, G. C. Weatherly, and S. V. Subramanian, Precipitation behavior in a medium carbon, Ti-V-N microalloyed steel, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 27, pp. 1149-1165, 1996.
[56]W. Yan, Y. Y. Shan, and K. Yang, Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 37A, pp. 2147-2158, 2006.
[57]T. H. North, H. B. Bell, A. Koukabi, and I. Craig, Notch Toughness of Low Oxygen Content Submerged Arc Deposits, Welding journal, vol. 58, pp. 343s-354s, 1979.
[58]K. Inoue, I. Ohnuma, H. Ohtani, K. Ishida, and T. Nishizawa, Solubility product of TiN in austenite, ISIJ International, vol. 38, pp. 991-997, 1998.
[59]D. P. Fairchild, D. G. Howden, and W. A. T. Clark, The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 31, pp. 641-652, 2000.
[60]K. Yamamoto, T. Hasegawa, and J. Takamura, Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels, ISIJ International, vol. 36, pp. 80-86, 1996.
[61]J. L. Lee and Y. T. Pan, Effect of Sulfur-Content on the Microstructure and Toughness of Simulated Heat-Affected Zone in Ti-Killed Steels, Metallurgical Transactions A-Physical Metallurgy and Materials Science, vol. 24, pp. 1399-1408, 1993.
[62]B. L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metallurgical Transactions, vol. 1, pp. 1987-1995, 1970.
[63]H. B. Yin, H. Shibata, T. Emi, and M. Suzuki, 'In-situ' observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ International, vol. 37, pp. 936-945, 1997.
[64]S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi, Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 31, pp. 1013-1021, 2000.
[65]S. Kimura, K. Nakajima, and S. Mizoguchi, Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 32, pp. 79-85, 2001.
[66]J. Ma, D. Zhan, Z. Jiang, and J. He, Effect of Ti, Al and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel Advanced Materials Research, vol. 79-82, pp. 143-146, 2009.
[67]F. Chai, C. F. Yang, H. Su, Y. Q. Zhang, and Z. Xu, Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone, Journal of Iron and Steel Research International, vol. 16, pp. 69-74, 2009.
[68]K. Guthmann, Günstige Giesstemperatur im Vergleich zum Erstarrungspunkt von Eisen- und Stahlschmelzen, Stahl und Eisen, vol. 71, pp. 399-402, 1951.
[69]E. Takeuchi and J. K. Brimacombe, Effect of Oscillation-Mark Formation on the Surface Quality of Continuously Cast Steel Slabs, Metallurgical Transactions B-Process Metallurgy, vol. 16, pp. 605-625, 1985.
[70]B. Hallstedt, Thermodynamic Assessment of the System Mgo-Al2o3, Journal of the American Ceramic Society, vol. 75, pp. 1497-1507, 1992.
[71]G. J. W. Kor and Turkdoga.Et, Sulfides and Oxides in Fe-Mn Alloys .3. Formation of Oxysulfides during Freezing of Steel, Metallurgical Transactions, vol. 3, pp. 1269-1278, 1972.
[72]H. Itoh, M. Hino, and S. Ban-Ya, Thermodynamics on the formation of non-metallic inclusion of spinel (MgO-Al2O3) in liquid steel, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 84, pp. 85-90, 1998.
[73]R. Dekkers, Non-metallic inclusions in liquid steel ladles, Katholieke Universiteit Leuven, Leuven, Belgium, 2002.
[74]L. F. Zhang and B. G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ International, vol. 43, pp. 271-291, 2003.
[75]H. Fujimura, S. Tsuge, Y. Komizo, and T. Nishizawa, Effect of oxide composition on solidification structure of ti added ferritic stainless steel, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 87, pp. 707-712, 2001.
[76]P. Kanjilal, S. K. Majumdar, and T. K. Pal, Prediction of acicular ferrite from flux ingredients in submerged arc weld metal of C-Mn steel, ISIJ International, vol. 45, pp. 876-885, 2005.
[77]D. S. Sarma, A. V. Karasev, and P. G. Jonsson, On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels, ISIJ International, vol. 49, pp. 1063-1074, 2009.
[78]A. R. Mills, G. Thewlis, and J. A. Whiteman, Nature of Inclusions in Steel Weld Metals and Their Influence on Formation of Acicular Ferrite, Materials Science and Technology, vol. 3, pp. 1051-1061, 1987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top