跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁育綾
研究生(外文):Yu-LingLiang
論文名稱:利用氣-液-固機制於矽基板上磊晶成長碳化矽薄膜之研究
論文名稱(外文):Growth of 3C-SiC films on Si substrates by Vapor-Liquid-Solid tri-phase epitaxy
指導教授:齊孝定黃肇瑞黃肇瑞引用關係
指導教授(外文):Xiao-Ding QiXiao-Ding Qi
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:碳化矽異質磊晶氣-液-固機制
外文關鍵詞:3C-SiCheteroepitaxyvapor-liquid-solid mechanism
相關次數:
  • 被引用被引用:2
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
碳化矽異質磊晶生長於矽基板上,其可用於製造高功率及高頻率的積體電路,也可以做為LED的基材,目前大多都採用化學氣相沉積法(CVD)或物理氣相傳輸技術(PVT)來製備,但利用化學氣相沉積法所使用的原料通常為易燃有毒的氣體,故需要昂貴的設備以防意外發生,而物理氣相傳輸技術則是需要高溫環境,極耗能量。
為了改善這些製程上的缺點,本研究將以氣液固機制,於矽基板上磊晶生長碳化矽薄膜,以甲烷為碳源、矽基板為矽源、以金屬銅當做溶劑。研究主要分成三個部分,第一個部分是利用不同的金屬粉末進行實驗,再擇一表現較佳的溶劑當作軸心進行後續的實驗。但若以金屬粉末當做溶劑則會有粉末無法分布均勻於矽基板表面、所生長出來的碳化矽不均勻、矽基板表面被銅液溶解使得表面粗糙度過高及雜相殘留太多等問題,為了改善這些問題,本研究的第二個部分則是利用濺鍍系統將溶劑鍍於矽基板取代粉末。而為了使實驗結果更優化,本實驗的第三個部分則是改變各種參數,例:銅膜厚度、生長溫度、Ar/CH4比及生長時間,以得最佳化製程。最後再依據實驗結果及文獻來推測碳化矽薄膜磊晶於矽基板上的生長機制。研究中將以XRD、SEM、EBSD、EDS及TEM對材料的晶相、巨觀結構、微結構、表面形貌及成分進行分析,而磊晶碳化矽薄膜的織構則利用phi scan及rocking curve進行分析。
研究成果顯示,若缺少溶劑,即使給予碳源及高溫也無法生成碳化矽。而以金屬粉末銅當做溶劑來生長碳化矽之表現最佳,且若使用銅膜當作溶劑來取代銅粉則能有效改善使用銅粉當作溶劑所產生的問題,例:殘留溶劑的量、試片表面粗糙度等。而實驗參數的改變(銅膜厚度、生長溫度、Ar/CH4比、生長時間)確實也會影響到碳化矽的生長,因為這些參數皆會影響碳化矽各個方向的成核及成長速率,當碳源過多、銅膜厚度太厚、生長溫度過高、Ar/CH4比過低時,都會造成非(111)方向的碳化矽成核及成長速度過快,使得在XRD的結果中觀察到碳化矽非(111)晶面之繞射峰,破壞了磊晶品質,也使得碳化矽之顆粒排列紊亂。生長溫度1100℃、Ar/CH4比為2000、銅膜厚度為30nm是實驗結果中最佳的參數,在此參數且不需碳化矽晶種的情況下,可以於矽基板上生長出磊晶3C-SiC薄膜,且碳化矽磊晶薄膜的結晶性及品質皆會隨著生長時間的增加而變好,但並非持溫時間越長越好,因為隨著生長時間的拉長,基板與磊晶碳化矽膜之間開始出現了空孔、間隙,推測是矽與碳化矽之間晶格差所產生的應力場所造成的。而矽基板與碳化矽磊晶薄膜間會有一界面層的存在,此界面層約1~2nm左右,此界面層的存在是為了緩衝矽基板與碳化矽薄膜間達20%的晶格差所造成的應力場。
Epitaxial 3C-SiC films grown on the Si substrates are highly desired in the high-power high-frequency integrated circuits and as the substrates for the growth of LEDs. Physical vapor transport and chemical vapor deposition are the two methods most often used to grow 3C-SiC films. But the former requires a high deposition temperature, consuming considerable amount of energy; while the later has to use highly toxic gases and hence requires expensive equipments to ensure the safety.
In this study, we attempt to solve above problems by adopting the vapor-liquid-solid tri-phase epitaxy method to grow 3C-SiC films on the Si substrates. The process used copper as the flux and methane as the carbon source, while silicon was dissolved from the substrate. There were three stages during the study. The first stage was to do a quick survey of a suitable metal flux. Experiments were carried out by simply spreading fine metallic powders on the surface of the Si substrates and then observing their solubility and wettability after melting at high temperature. In the second stage, experiments were performed with the chosen flux being coated on the Si substrates. The coating was required to avoid some problems occurred with the use of the powder spreads, such as uneven thickness of the grown film, rough SiC/Si interface due to excessive dissolution of Si at some part of the substrate, large quantity of remaining flux on the surface after growth, etc. The third stage was to improve the quality of the grown films by optimizing the parameters affecting the film growth, such as the thickness of the flux coating, growth temperature, dwelling and cooling time, Ar/CH4 gas ratio, etc. The composition, phase, surface morphology, microstructure, texture, epitaxial relation were examined by a range of techniques, including EDS, EBSD, XRD (Theta-2Tehta, omega and phi scans), SEM, TEM, etc. Based on the observed results in this study and other references, the possible epitaxial growth mechanisms of 3C-SiC on Si were discussed.
Our results showed that without a flux no SiC film could be formed on the Si surface by flowing over Ar/CH4 gas at the attempted temperatures up to 1200℃. Copper was the best flux among the several metal powders tried so far. Coating the flux film, instead of spreading powders, was important to avoid some problems, in particular the surface roughness and the amount of the residual flux. The fore-mentioned parameters affected the 3C-SiC film growth in many ways. For example, excess CH4 supply, high growth temperature and a large thickness of the Cu flux film all resulted in a poor film texture, as indicated by the appearance of the reflection peaks other than the 〈111〉 faces in the XRD Theta-2Theta scans. This was the consequence of too fast nucleation and growth rates. Some of the best parameters identified were as follows: growth temperature 1100℃, Ar/CH4 ratio 2000:1, and the Cu flux thickness 30 nm. Under such a condition, 3C-SiC films could be grown epitaxially on the (111) Si substrates without SiC seed. The crystallinity of 3C-SiC films improved as the growth time increased. However, prolonged growth time resulted in some other problems. In thus grown samples, void regions or gaps were sometimes observed in the vicinity close to the interface between the film and the substrates. Presumably, the defects were cracks arising from the large strains introduced by the extremely large lattice misfit (~20%). Another possible reason was the grain growth under strain where the small grains were absorbed by the large ones. In addition, a thin intermediate layer of about 1-2 nm between the Si substrate and epitaxial 3C-SiC film was observed in TEM. We assume that such an intermediate layer occurred because it was helpful to partially relax the large misfit strain, allowing the epitaxial growth to carry on.
中文摘要 I
英文摘要 III
誌謝 VI
總目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 基礎理論 3
2-1 碳化矽的結構 3
2-2 碳化矽的性質 7
2-3 碳化矽的應用 10
2-4 碳化矽的製備 11
2-4-1 塊材 11
2-4-2 薄膜 18
2-4-3 纖維 27
2-5 薄膜生長理論 29
2-6 磊晶生長理論 33
2-7 氣液固機構(Vapor-liquid-solid mechanism,VLS) 34
2-8 碳化矽磊晶層中缺陷介紹 36
第三章 實驗方法及步驟 41
3-1 實驗構想 41
3-1-1 碳化矽磊晶薄膜的生長方法 41
3-1-2 液相溶劑的選擇 41
3-1-3 碳源 42
3-2 實驗材料 44
3-3 實驗流程 45
3-3-1 實驗流程圖 45
3-3-2 基板準備 45
3-3-3 碳化矽的成長製備 46
3-4 分析設備 47
3-4-1 薄膜X光繞射儀(Thin Film X-ray Diffractiometer) 47
3-4-2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) 48
3-4-3 穿透式電子顯微鏡(Transmission electron microscope, TEM) 48
3-4-4 背向散射電子繞射分析(Electron Back-Scattered Diffraction; EBSD) 48
第四章 結果與討論 51
4-1 以粉末當作溶劑來製備碳化矽 51
4-1-1 溶劑的選擇 51
4-1-2 以銅粉當作溶劑來製備碳化矽 52
4-2 以銅膜當作溶劑來製備碳化矽薄膜 58
4-3 不同參數的改變對於碳化矽生長情況之影響 66
4-3-1 不同碳源對碳化矽生長情況之影響 66
4-3-2 不同膜厚對於碳化矽生長情況之影響 69
4-3-3 不同的生長溫度、流量比(Ar/CH4)對於碳化矽生長情況之影響 80
4-3-4 不同生長時間對碳化矽生長情況的影響 88
4-4 碳化矽薄膜的成長機制 102
第五章 結論 110
參考文獻 112


[1]A.R. West, Solid State Chemistry and Its Applications 1987.
[2]P.P. X. J. Ninga, Journal of Materials Research 11 (1996).
[3]R. Stevens, Journal of Materials Science 7 (1972) 517-521.
[4]P.T.B. Shaffer, Acta Cryst. 25 (1969).
[5]Z. Liu, Growth of Bulk single crystal and its application to SiC, France, 2008.
[6]A.R.P.A.L.B. ROWLAND, IEEE 90 (2002).
[7]汪建民, 材料分析, 中國材料科學學會, 2005.
[8]J.B.C.a.R.W. Johnson, Solid-State electronics 39 (1996).
[9]李文鴻, 國立台灣科技大學化學工程技術研究所博士論文 (1994).
[10]宋健民, in, 2007, p. 166.
[11]C.-M. Zetterling, Process Technology for SiC Devices, 2002.
[12]W.D. Callister, Materials Science and Engineering: An Introduction, Wiley, 2002.
[13]黃振倉, 碳化矽奈米針製備及其形成機制之研究, 國立清華
大學材料科學工程研究所博士論文, 1997.
[14]林博文, in, 陶瓷技術手冊, 1994, p. 745.
[15]Y.S. Park, Sic Materials and Devices, Lightning Source Inc, 1998.
[16]S.K. Andersson, M.E. Thomas, Infrared Physics & Technology 39 (1998) 223-234.
[17]O. Kim-Hak, G. Ferro, J. Dazord, M. Marinova, J. Lorenzzi, E. Polychroniadis, P. Chaudouët, D. Chaussende, P. Miele, Journal of Crystal Growth 311 (2009) 2385-2390.
[18]H.A. Tetsuya Takeuchi, Kazumasa Hiramatsu, Nobuhiko Sawaki, Isamu Akasaki, Journal of Crystal Growth 115 (1991) 634-638.
[19]J.S. J. R. O'Connor (Ed.) Silicon carbide, a high temperature semiconductor Symposium Publications Division, Pergamon Press, 1960.
[20]M.N.P.C. G. Rehder, Journal of Non-Crystalline Solids 352 (2006) 1822-1828.
[21]B.J. Štefan Kavecký, Jana Madejová, Pavol Šajgalı́k, Journal of the European Ceramic Society 20 (2000) 1939-1946.
[22]K.Y. J.E.D. Afaghani, I. Horaguchi, T. Nakamoto, Wear 195 (1996) 223-231.
[23]M.G.S. G.L. Harris, Amorphous and Crystalline Silicon Carbide III and Other Group Iv-IV Materials, Springer Verlag, 1992.
[24]Y.M. Tairov, V.F. Tsvetkov, Journal of Crystal Growth 43 (1978) 209-212.
[25]Y.M. Tairov, V.F. Tsvetkov, Journal of Crystal Growth 52 (1981) 146-150.
[26]W.F. Knippenberg, Philips Res. Rep. 18 (1963) 161.
[27]V.F.T. Yu.M. Tairov, 52 (1981) 146-150.
[28]P.G. Neudeck, J.A. Powell, Electron Device Letters, IEEE 15 (1994) 63-65.
[29]Y. Hatanaka, K. Sano, T. Aoki, A.M. Wrobel, Thin Solid Films 368 (2000) 287-291.
[30]S.-S. Chang, A. Sakai, Materials Letters 58 (2004) 1212-1217.
[31]B.V. P.D. Ramesh, Munia Ganguli and K.J. Rao Journal of Materials Research 9 (1994) 3025 - 3027.
[32]B.V. P. D. Ramesh, M. Ganguli, R.J. Rao, , J. Mater. Res. 9 (1994) 3025.
[33]M.S. R. Yakimova , M. Tuominen, T. Iakimov, P. Råback, A. Vehanen, E. Janzén, Materials Science and Engineering: B 61-62 (1999) 54-47.
[34]S.T.A. V. F. Tsvetkov, H. S. Kong, C. H. Carter, Jr., Inst. Phys. Conf. Ser. 142 (1997) 17.
[35]M.H.M. Dieter H Hofmann, Materials Science and Engineering: B 61-62 (1999).
[36]Y.A.V. Y. M. Tairov, Electroluminescence (Topics in Applied Physics; V. 17) Springer-Verlag, 1977.
[37]D.N.S.P. Prof. Dr. habil Yu. M. Tairov, Dr. N. A. Smirnova, Dr. A. A. Kalnin, Crystal Research and Technology 21 (1986) 1503-1507.
[38]F.A. Halden, Proc. Conf. on Silicon Carbide, Boston 1959, Pergamon Press, 1960.
[39]G.A.S. R. I. Scace, J. Chem. Phys. 30 (1959) 1551.
[40]R.N. Hall, Journal of Applied Physics 29 (1958) 914.
[41]M.M. Peter Capper, Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, 2007.
[42]D.H. Hofmann, M.H. Müller, Materials Science and Engineering: B 61-62 (1999) 29-39.
[43]R. Wu, G. Yang, M. Gao, B. Li, J. Chen, R. Zhai, Y. Pan, Crystal Growth & Design 9 (2008) 100-104.
[44]A. Tanaka, N. Shiozaki, H. Katsuno, Journal of Crystal Growth 237-239 (2002) 1202-1205.
[45]Z. Shi, W. Zhang, G.F. Zheng, J. Kurianski, M.A. Green, R. Bergmann, Journal of Crystal Growth 151 (1995) 278-284.
[46]L.M.X. X. M. Xi, and X. F. Yang a), Journal of MATERIALS RESEARCH (1995).
[47]L.B.G.a.A.I. Mlavsky, J. Electrochem. Soc. 111 (1964) 805-810.
[48]P.A.G. B.M. Epelbaum, Z. Herro, M. Bickermann and A. Winnacker, Materials Science Forum Vols. 457-460 (2004) 119-122.
[49]G.F. Jean Lorenzzi, Francois Cauwet, Veronique Souliere and Davy Carole, Journal of Crystal Growth 318 (2011) 397-400.
[50]C.J. F. Abdoun, Gabriel Ferro, François Cauwet, Yves Monteil, Materials Science Forum 457-460 (2004) 245-248.
[51]M.S. Gabriel Ferro, Olivier Kim-Hak, François Cauwet, Yves Monteil, Materials Science Forum 556-557 (2007) 41-46.
[52]A.S. BAKIN, International Journal of High Speed Electronics and Systems 15 (2005) 747-780.
[53]Z.Z. J. Wang, K. T. Park, K. Hiraga and T. Yao, Journal of Electronic Materials 26 (1997) 232-236.
[54]W.D.W. Stephen M. Rossnagel , Jerome J. Haber Handbook of Plasma Processing Technology: fundamentals, etching, deposition, and surface interactions, 1990.
[55]G.S. H. Kleykamp, Berichte der Bunsengesellschaft für physikalische Chemie 97 (1993) 799-804.
[56]R.W.C. K. H. Jürgen Buschow, Merton C. Flemings, Bernard Ilschner (print), Edward J. Kramer, Subhash Mahajan, and Patrick Veyssière Encyclopedia of Materials: Science and Technology 2010.
[57]S.I.M. T.S. Sudarshan Microelectronic Engineering 83 (2006) 155-159.
[58]K.M. M. Komatz, S. K. Hong, T. Yao, physica status solidi (c) 3 (2006) 571-574.
[59]M.J.O.L. A.A. Burk Jr., H.D. Nordby Jr., Journal of Crystal Growth 200 (1999) 458-466.
[60]Z.Z. M. Beshkova, journal of Materials Science 14 (2003) 767-768.
[61]J.H.a.M.O. Seishi Yajima, Chemistry Letters 4 (1975) 931-934.
[62]J.p.a.T. Vasiliauskas, Epitaxial growth of thin films, France, 2008.
[63]T.F. Hans J. Scheel, Crystal growth technology, 2004.
[64]M. Ohring, Materials Science of Thin Films 2001.
[65]L. Royer, Ann. Phys. 23 (1935) 16.
[66]J.H.V.D. Merwe, Journal of Applied Physics 34 (1963) 117-121.
[67]W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, 1970.
[68]P.H. Pumphery, Grain boundary structure and properties, New York, Academic Press, 1976.
[69]A.B.a.A.H.K. R. W. Balluffi, Acta Metal. 30 (1982) 1453.
[70]A.B.a.R.W. Balluffi, Acta Metal. 29 (1981) 1703.
[71]楊光義. 翟蕊, 吳仁兵, 陳建軍, 林晶, 吳玲玲, 潘頤, Acta Materiae Compositae Sinica 24 (2007).
[72]M. Soueidan, G. Ferro, C. Jacquier, P. Godignon, J. Pezoldt, M. Lazar, B. Nsouli, Y. Monteil, Diamond and Related Materials 16 (2007) 37-45.
[73]V.S. Jean Lorenzzi, Davy Carole, Nikoletta Jegenyes, Olivier Kim-Hak, François Cauwet, Gabriel Ferro, Diamond and Related Materials 20 (2011) 808-813.
[74]M. Soueidan, G. Ferro, B. Nsouli, F. Cauwet, L. Mollet, C. Jacquier, G. Younes, Y. Monteil, Journal of Crystal Growth 293 (2006) 433-437.
[75]Y.F. Chen, X.Z. Liu, X.W. Deng, Y.R. Li, Thin Solid Films 517 (2009) 2882-2885.
[76]M. Soueidan, G. Ferro, B. Nsouli, M. Roumié, N. Habka, V. Souliere, J.-M. Bluet, M. Kazan, Journal of Crystal Growth 327 (2011) 46-51.
[77]M.S. Gabriel Ferro, Christophe Jacquier, Phillippe Godignon, Thomas Stauden, Jörg Pezoldt, Mihai Lazar, Josep Montserrat, Yves Monteil, Materials Science Forum 527-529 (2006) 275-278.
[78]G.F.a.C. Jacquier, New Journal of Chemistry 28 (2004) 889-896.
[79]N. Schulze, D.L. Barrett, G. Pensl, S. Rohmfeld, M. Hundhausen, Materials Science and Engineering: B 61-62 (1999) 44-47.
[80]J. Heindl, H.P. Strunk, V.D. Heydemann, G. Pensl, physica status solidi (a) 162 (1997) 251-262.
[81]T.A. Kuhr, E.K. Sanchez, M. Skowronski, W.M. Vetter, M. Dudley, Journal of Applied Physics 89 (2001) 4625-4630.
[82]F.C. Frank, Acta Crystallographica 4 (1951) 497-501.
[83]Y. Zhang, H.W. Shim, H. Huang, Applied Physics Letters 92 (2008) 261908-3.
[84]H.P. Iwata, U. Lindefelt, S. Öberg, P.R. Briddon, Physica B: Condensed Matter 340-342 (2003) 165-170.
[85]M. Soueidan, G. Ferro, Advanced Functional Materials 16 (2006) 975-979.
[86]T.A. A. Tanaka, E. Ohkura, H. Katsuno, Journal of Crystal Growth 269 (2004) 413-418.
[87]M.O.a.S.Y. Masashi Kumagawa, Jpn. J. Appl. Phys. 9 (1970) 1422-1423.
[88]R.W. Guangyi Yang, Mingxia Gao, Jianjun Chen, and Yi Pan, Cryst. Res. Technol. 42 (2007) 445-450.
[89]M. Imade, et al., Materials Letters 63 (2009) 649-651.
[90]M. Syväjärvi, R. Yakimova, H.H. Radamson, N.T. Son, Q. Wahab, I.G. Ivanov, E. Janzén, Journal of Crystal Growth 197 (1999) 147-154.
[91]B.W.F. Michael G. Mauk, Archana Sharma, Robert G. Hunsperger, Journal of Crystal Growth 225 (2001) 322-329.
[92]Z.L. Xiaoding Qi, Qingzhen Huang, Jingkui Liang, Jiming Chen, Yichuan Huang, Minwang Qiu, Hong Zhang, Physica Status Solidi (a) 114 (1989) K127-K130.
[93]G.F. Christophe Jacquier, François Cauwet, Jean Claude Viala, Ghassan Younes, Yves Monteil, Journal of Crystal Growth 254 (2003) 123-130.
[94]G. Hong, Y. Chen, P. Li, J. Zhang, Carbon 50 (2012) 2067-2082.
[95]D. Yuan, L. Ding, H. Chu, Y. Feng, T.P. McNicholas, J. Liu, Nano Letters 8 (2008) 2576-2579.
[96]B.C. Kang, S.B. Lee, J.H. Boo, Thin Solid Films 464–465 (2004) 215-219.
[97]J.C. Li, C.S. Lee, S.T. Lee, Chemical Physics Letters 355 (2002) 147-150.
[98]Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou, X. Liu, J. Zhu, Applied Physics Letters 75 (1999) 507-509.
[99]X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, B.-K. Teo, Journal of the American Chemical Society 124 (2002) 14464-14471.
[100]L.D. Zhang, G.W. Meng, F. Phillipp, Materials Science and Engineering: A 286 (2000) 34-38.
[101]L. Stolt, F.M. D'Heurle, Thin Solid Films 189 (1990) 269-274.
[102]F.C. Frank, Discussions of the Faraday Society 5 (1949) 48-54.
[103]W.K. Burton, N. Cabrera, F.C. Frank, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 243 (1951) 299-358.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top