跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王業明
研究生(外文):Yeh-MingWang
論文名稱:Cu2ZnSn1-xInxSe4奈米晶的熱溶合成及其性質研究
論文名稱(外文):Solvothermal synthesis and properties of Cu2ZnSn1-xInxSe4 nanocrystals
指導教授:林文台
指導教授(外文):Wen-Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:152
中文關鍵詞:熱溶法高壓釜奈米晶
外文關鍵詞:solvothermalautoclaveCZTISe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本實驗藉由兩種熱溶法合成Cu2ZnSn1-xInxSe4(CZTISe)(x = 0.1和0.2)及Cu摻雜CZTISe奈米晶,探討不同溶劑、前驅溶液之莫耳比、溫度、時間對合成影響,同時探討CZTISe及Cu摻雜CZTISe奈米晶之光學及熱電性值。在高壓釜中添加聯胺於乙二胺溶劑,可在200℃持溫72小時加速合成純相CZTISe。其原因為聯胺具有使金屬硫系化合物在熱溶反應中降維度(dimensional reduction)之功能,而相較於CZTSe,In得摻雜明顯的阻礙CZTISe奈米晶之生成。在氮氣中以油胺為溶劑合成CZTSe及CZTISe奈米晶,分別於250℃持溫36小時及48小時可合成出純相,其也顯示In摻雜會阻礙CZTISe奈米晶之生成。藉由UV-vis光譜儀測得CZTSe及CZTISe奈米晶之能隙約為1.1eV。
In the present study, the synthesis of Cu2ZnSn1-xInxSe4 (CZTISe) (x = 0.1 and 0.2) and Cu-doped CZTISe nanocrystals grown by two solvothermal processes as a function of the solvent, the molar ratio of precursors, temperature and time were explored. Meanwhile, the optical and thermoelectric properties of CZTISe and Cu-doped CZTISe nanocrystals were also studied. On synthesis in an autoclave, the addition of hydrazine to the ethylenediamine solvent speeded up the formation of pure CZTISe nanocrystals at 200˚C for 72 h. The reason can be explained in terms of the dimensional reduction of metal chalcogenides in the solvothermal reaction by hydrazine. However, as compared with the CZTSe nanocrystals, the formation rate of CZTISe nanocrystals was significantly depressed due to In doping. On synthesis in N2 in the oleylamine solven the pure CZTSe and CZTISe nanocrystals could be acquired at 250˚C for 36 and 48 h, respectively, also revealing that In-doping depressed the growth rate of CZTISe nanocrystals. The bandgaps of CZTSe and CZTISe nanocrystals were determined to be about 1.1 eV by UV-vis spectroscopy.
目錄
摘要I
AbstractII
目錄III
圖目錄VII
第一章 引言1
第二章 熱電基礎理論與文獻回顧3
2.1基本熱電原理3
2.1.1Seebeck效應[2, 15-16]3
2.1.2 Peltier效應[17]4
2.1.3 Thomson效應[18-22]4
2.1.4熱電優值[2, 23, 28]5
2.1.5熱電優值的發展歷史趨勢[28]6
2.2熱電材料的介紹6
2.2.1熱電材料物理特性需求6
2.2.2熱電材類分類7
2.2.3提升材料熱電優值的方法8
2.3 Cu2ZnSnSe4的文獻回顧11
2.4 研究動機:15
第三章實驗步驟與方法18
3.1.熱溶法在高壓釜(autoclave)合成Cu2ZnSn1-xInxSe4(CZTISe)奈米晶18
3.2熱溶法在氮氣中合成CZTSe及CZTISe奈米晶19
3.3材料特性分析20
3.3.1 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)[61]20
3.3.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)[61]21
3.3.3 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS)[61]22
3.3.4 X光繞射儀(X-ray Diffractometer)[61]23
3.3.5 紫外/可見光(UV-vis)光譜儀[62]25
3.3.6 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis,ESCA)[63]26
3.3.7 拉曼光譜儀(Raman Spectrometer) [64-65]27
3.3.8熱電性值分析29
第四章結果與討論32
4.1 熱溶法在高壓釜(autoclave)合成Cu2ZnSn1-xInxSe4(CZTISe)奈米晶32
4.1.1 聯胺(hydrazine)對在高壓釜中合成CZTISe奈米晶影響32
4.1.2 In摻雜對熱溶法在高壓釜中合成CZTSe奈米晶影響35
4.1.3 Cu摻雜Cu2ZnSn1-xInxSe4(CZTISe)奈米晶36
4.1.4熱溶法在高壓釜中合成CZTISe奈米晶之微結構37
4.1.5 CZTISe及Cu摻雜 CZTISe奈米晶之光學性質38
4.1.6 Cu摻雜CZTISe奈米晶真空燒結之相變化39
4.1.7 熱電性值40
4.2熱溶法在氮氣中合成CZTSe及CZTISe (Cu2ZnSn1-xInxSe4)41
4.2.1 In摻雜對熱溶法在氮氣中合成CZTSe奈米晶影響42
4.2.2 Cu摻雜CZTISe奈米晶粒43
4.2.3 熱溶法在氮氣中合成CZTISe奈米晶之微結構44
4.2.4 CZTISe及Cu摻雜 CZTISe奈米晶之光學性值45
第五章結論46
參考文獻48
附錄144
JCPDS Cards No. 01-070-8930 (Cu2ZnSnSe4)144
JCPDS Cards No. 00-037-1463 (ZnSe) 145
JCPDS Cards No. 01-086-1239 (CuSe) 146
JCPDS Cards No. 01-072-8034 (Cu2SnSe3) 147
JCPDS Cards No. 01-072-7165 (Cu2Se) 149
JCPDS Cards No. 00-006-0362 (Se) 150
JCPDS Cards No. 00-048-1224 (SnSe) 151
JCPDS Cards No. 01-072-7165 (Cu2SnSe4) 152
[1]賴麗蓉, 京都議定書之分析及未來發展勢, 能源季刊, 28 (3), 1-16, 1998.
[2]D. M. Rowe, CRC handbook of thermoelectrics, CRC Press, Boca Raton USA, 1995.
[3]C. Keffer, T. M. Hayes and A. Bienenstock, PbTe Debye-Waller Factors and Band-Gap Temperature Dependence, Physical Review Letters, 21 (25), 1676-1678, 1968.
[4]J. Sofo and G. Mahan, Electronic structure of CoSb3: A narrow-band-gap semiconductor, Physical Review B, 58 (23), 15620, 1998.
[5]P. Larson, S. Mahanti and M. Kanatzidis, Electronic structure and transport of Bi2 Te3 and BaBiTe3, Physical Review B, 61 (12), 8162, 2000.
[6]X. J. Wang, M. B. Tang, J. T. Zhao, H. H. Chen and X. X. Yang, Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2, Applied Physics Letters, 90 (23), 232107-232107-3, 2007.
[7]T. Harman, P. Taylor, M. Walsh and B. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 297 (5590), 2229-2232, 2002.
[8]J. Caylor, K. Coonley, J. Stuart, T. Colpitts and R. Venkatasubramanian, Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity, Applied Physics Letters, 87 023105, 2005.
[9]J. R. Sootsman, H. Kong, C. Uher, J. J. D'Angelo, C. I. Wu, T. P. Hogan, T. Caillat and M. G. Kanatzidis, ChemInform Abstract: Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring, ChemInform, 40 (3), 2009.
[10]G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature materials, 7 (2), 105-114, 2008.
[11]M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin and T. Koga, Low-dimensional thermoelectric materials, Physics of the Solid State, 41 (5), 679-682, 1999.
[12]R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Growth of one-dimensional Si/SiGe heterostructures by thermal CVD, Nature, 413 597-602, 2001.
[13]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto and D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320 (5876), 634-638, 2008.
[14]M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang and P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires, Advanced Materials, 19 (19), 3047-3051, 2007.
[15]T. J. Seebeck, Magnetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265 1823.
[16]T. J. Seebeck, Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen, Schweigger's J. Phy., 46 101, 1826.
[17]J. Peltier, Investigation of the heat developed by electric currents in homogeneous materials and at the junction of two different conductors, Annales de Chimie et de Physique, 56 (1834), 371, 1834.
[18]W. Thomson, An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam, Transactions of the Edinburgh Royal Society, 16 541-574, 1849.
[19]W. Thomson, On a Mechanical Theory of Thermo-Electric Currents, Proceeding Of The Royal Society Of Edinburgh, 91 1851.
[20]W. Thomson, Account of researches in thermo-electricity, Proceedings of the Royal Society of London, 7 49-58, 1854.
[21]W. Thomson, On the electro-dynamic qualities of metals:--effects of magnetization on the electric conductivity of nickel and of iron, Proceedings of the Royal Society of London, 8 546-550, 1856.
[22]W. Thomson, The Bakerian Lecture.—On the Electro-dynamic Qualities of Metals, Philosophical Transactions of the Royal Society of London, 146 (3), 649-751, 1856.
[23]G. S. Nolas, J. W. Sharp and H. J., Goldsmid,Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg, 2001.
[24]F. Roeser, Thermoelectric Thermometry, Appl. Phys., 11 388, 1940.
[25]P. W. Bridgeman, The Thermodynamics of Electrical Phenomena in Metals, Dover, New York, 1961.
[26]H. B. Callen, Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic and Galvanomagnetic Effects, Phys. Rev., 1349 1948.
[27]H. B. Callen, Irreversible thermodynamics of thermoelectricity, Rev. Mod. Phys., 26 237, 1954.
[28]D. M. Rowe, Thermoelectrics Handbook: Micro to Nano, CRC Press, New York, 2006.
[29]K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. Polychroniadis and M. G. Kanatzidis, Cubic AgPbmSbTe2+ m: Bulk thermoelectric materials with high figure of merit, Science, 303 (5659), 818-821, 2004.
[30]E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. Polychroniadis and M. G. Kanatzidis, Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPb m SbTe2+ m. The Myth of Solid Solutions, Journal of the American Chemical Society, 127 (25), 9177-9190, 2005.
[31]K. Uehara and J. S. Tse, Calculations of transport properties with the linearized augmented plane-wave method, Physical Review B, 61 (3), 1639, 2000.
[32]K. Kishimoto, M. Tsukamoto and T. Koyanagi, Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering, Journal of Applied Physics, 92 (9), 5331, 2002.
[33]G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics: basic principles and new materials developments, Springer Verlag, 2001.
[34]X. Shi, L. Xi, J. Fan, W. Zhang and L. Chen, Cu− Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure, Chemistry of Materials, 2010.
[35]X. Shi, F. Huang, M. Liu and L. Chen, Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds CuZnSnInSe, Applied Physics Letters, 94 122103, 2009.
[36]M. L. Liu, I. W. Chen, F. Q. Huang and L. D. Chen, Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4, Advanced Materials, 21 (37), 3808-3812, 2009.
[37]D. Morelli, T. Caillat, J. P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen and C. Uher, Low-temperature transport properties of p-type CoSb3, Physical Review B, 51 (15), 9622, 1995.
[38]Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, Thermoelectric properties of CoSb3, Journal of alloys and compounds, 315 (1), 193-197, 2001.
[39]S. Bai, Y. Pei, L. Chen, W. Zhang, X. Zhao and J. Yang, Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12, Acta Materialia, 57 (11), 3135-3139, 2009.
[40]X. Shi, J. Yang, S. Bai, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. Wong‐Ng, On the Design of High‐Efficiency Thermoelectric Clathrates through a Systematic Cross‐Substitution of Framework Elements, Advanced Functional Materials, 20 (5), 755-763, 2010.
[41]W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu and X. Tang, Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler, Journal of the American Chemical Society, 131 (10), 3713-3720, 2009.
[42]L. Xi, J. Yang, W. Zhang and L. Chen, Anomalous Dual-Element Filling in Partially Filled Skutterudites, Journal of the American Chemical Society, 131 (15), 5560-5563, 2009.
[43]M. L. Liu, Y. M. Wang, F. Q. Huang, L. D. Chen and W. D. Wang, Optical and electrical properties study on p-type conducting CuAlS2+x with wide band gap, Scripta Materialia, 57 (12), 1133-1136, 2007.
[44]M. L. Liu, F. Q. Huang, L. D. Chen, Y. M. Wang, Y. H. Wang, G. F. Li and Q. Zhang, p-type transparent conductor: Zn-doped CuAlS2, Applied Physics Letters, 90 (7), 072109-072109-3, 2007.
[45]M. L. Liu, F. Q. Huang and L. D. Chen, p-Type electrical conduction and wide optical band gap in Mg-doped CuAlS2, Scripta Materialia, 58 (11), 1002-1005, 2008.
[46]M. Lalić, J. Mestnik-Filho, A. Carbonari and R. Saxena, Changes induced by the presence of Zn or Ni impurity at Cu sites in CuAlO2 delafossite, Solid State Communications, 125 (3), 175-178, 2003.
[47]T. Ishiguro, A. Kitazawa, N. Mizutani and M. Kato, Single-crystal growth and crystal structure refinement of CuAlO2, Journal of Solid State Chemistry, 40 (2), 170-174, 1981.
[48]H. Goldsmid and J. Sharp, Estimation of the thermal band gap of a semiconductor from Seebeck measurements, Journal of electronic materials, 28 (7), 869-872, 1999.
[49]H. Schafer, On the Problem of Polar Intermetallic Compounds: The Stimulation of E. Zintl's Work for the Modern Chemistry of Intermetallics, Annual Review of Materials Science, 15 (1), 1-42, 1985.
[50]S. Paschen, V. Pacheco, A. Bentien, A. Sanchez, W. Carrillo-Cabrera, M. Baenitz, B. Iversen, Y. Grin and F. Steglich, Are type-I clathrates Zintl phases and [] phonon glasses and electron single crystals'?, Physica B: Condensed Matter, 328 (1-2), 39-43, 2003.
[51]I. Olekseyuk, L. Gulay, I. Dydchak, L. Piskach, O. Parasyuk and O. Marchuk, Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds, Journal of alloys and compounds, 340 (1), 141-145, 2002.
[52]S. Hall, J. Szymanski and J. Stewart, Kesterite, Cu2 (Zn, Fe) SnS4 and Stannite Cu2 (Fe, Zn) SnS4, structurally similar but distinct minerals, Canadian Mineralogist, 16 (57), 131-137, 1978.
[53]L. Huang, X. Li, Q. Zhang, W. Miao, L. Zhang, X. Yan, Z. Zhang and Z. Hua, Properties of transparent conductive InO: Mo thin films deposited by Channel Spark Ablation, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23 1350, 2005.
[54]A. Voskamyan, Electrical properties of copper selenide, Fizika i Tekhnika Poluprovodnikov, 12 (11), 2096-2099, 1978.
[55]G. Slack, THERMAL CONDUCTIVITY OF II-VI COMPOUNDS AND PHONON SCATTERING BY IRON (2+) IMPURITIES, 1972.
[56]J. Sootsman, H. Kong and C. Uher, JJD’Angelo, CI Wu, TP Hogan, T. Caillat, and MG Kanatzidis, Angew. Chem., Int. Ed, 47 8618, 2008.
[57]Y. F. Du, J. Q. Fan, W. H. Zhou, Z. Zhou, J. Jiao and S. Wu, One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, 2012.
[58]A. Shavel, J. Arbiol and A. Cabot, Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+ x+ 2 y, Journal of the American Chemical Society, 132 (13), 4514-4515, 2010.
[59]S. Chen, X. Gong, A. Walsh and S. H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights, Applied Physics Letters, 94 (4), 041903, 2009.
[60]L. Shi, C. Pei, Q. Li and Y. Xu, Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4, Journal of the American Chemical Society, 2011.
[61]汪建民等人, 材料分析, 中國材料科學學會, 1998.
[62]R. L. Weiher and R. P. Ley, Optical Properties of Indium Oxide, Journal of Applied Physics, 37 (1), 299-302, 1966.
[63]J. C. Vickerman and I. S. Gilmore, Surface analysis: the principal techniques, Wiley Online Library, 2009.
[64]C. Raman, A change of wave-length in light scattering, Nature, 121 (3051), 619-619, 1928.
[65]A. Myers Kelley, Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution, The Journal of Physical Chemistry A, 112 (47), 11975-11991, 2008.
[66]C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R. Júnior, A. R. Jurelo, J. L. P. Júnior, P. Pureur and A. L. Chinelatto, Raman spectroscopy of highly oriented FeSe0.5Te0.5 superconductor, Superconductor Science and Technology, 25 025014, 2012.
[67]G. J. Thomas Jr and D. A. Agard, Quantitative analysis of nucleic acids, proteins, and viruses by Raman band deconvolution, Biophysical journal, 46 (6), 763-768, 1984.
[68]M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok and E. Mellikov, Cu2Zn1–xCdxSn(Se1–ySy)4 solid solutions as absorber materials for solar cells, physica status solidi (a), 205 (1), 167-170, 2008.
[69]G. Marcano, C. Rincón, S. López, G. Sánchez Pérez, J. Herrera-Pérez, J. Mendoza-Alvarez and P. Rodríguez, Raman spectrum of monoclinic semiconductor, Solid State Communications, 151 (1), 84-86, 2011.
[70]P. Uday Bhaskar, G. Suresh Babu, Y. Kishore Kumar and V. Sundara Raja, Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3―ZnSe thin films, Applied Surface Science, 257 (20), 8529-8534, 2011.
[71]Q. Peng, Y. Dong, Z. Deng, X. Sun and Y. Li, Low-temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe, Inorganic Chemistry, 40 (16), 3840-3841, 2001.
[72]A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez and S. Siebentritt, Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films, Applied Physics Letters, 98 101907, 2011.
[73]P. Salomé, P. Fernandes, A. Da Cunha, J. Leitão, J. Malaquias, A. Weber, J. González and M. Da Silva, Growth pressure dependence of Cu2ZnSnSe4 properties, Solar Energy Materials and Solar Cells, 94 (12), 2176-2180, 2010.
[74]F. Hergert and R. Hock, Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) Thin solid films, 515 (15), 5953-5956, 2007.
[75]R. A. Wibowo, W. H. Jung, M. H. Al-Faruqi, I. Amal and K. H. Kim, Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders, Materials Chemistry and Physics, 124 (2-3), 1006-1010, 2010.
[76]D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device, Advanced Materials, 20 (19), 3657-3662, 2008.
[77]D. B. Mitzi, Solution processing of chalcogenide semiconductors via dimensional reduction, Advanced Materials, 21 (31), 3141-3158, 2009.
[78]D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac and A. G. Schrott, Hydrazine-based deposition route for device-quality CIGS films, Thin solid films, 517 (7), 2158-2162, 2009.
[79]T. K. Todorov, K. B. Reuter and D. B. Mitzi, High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber, Advanced Materials, 22 (20), E156-E159, 2010.
[80]E. G. Tulsky and R. Jeffrey, Dimensional reduction: A practical formalism for manipulating solid structures, Chemistry of Materials, 13 (4), 1149-1166, 2001.
[81]R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32 (5), 751-767, 1976.
[82]Q. Li, Y. Ding, X. Liu and Y. Qian, Preparation of ternary I-IV-VI nanocrystallines via a mild solution route, Materials research bulletin, 36 (15), 2649-2656, 2001.
[83]L. Partain, R. Schneider, L. Donaghey and P. Mcleod, Surface chemistry of CuxS and CuxS/CdS determined from x‐ray photoelectron spectroscopy, Journal of applied physics, 57 (11), 5056-5065, 1985.
[84]X. Chen, X. Wang, C. An, J. Liu and Y. Qian, Preparation and characterization of ternary Cu–Sn–E (E= S, Se) semiconductor nanocrystallites via a solvothermal element reaction route, Journal of crystal growth, 256 (3), 368-376, 2003.
[85]B. Canava, J. Vigneron, A. Etcheberry, J. Guillemoles and D. Lincot, High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface, Applied Surface Science, 202 (1-2), 8-14, 2002.
[86]M. Shenasa, S. Sainkar and D. Lichtman, XPS study of some selected selenium compounds, Journal of electron spectroscopy and related phenomena, 40 (4), 329-337, 1986.
[87]T. ZHANG, A. KOUYAMA and T. SUGIURA, Synthesis of particulate InN crystal by the reaction of InCl3 with LiNH2, 2012.
[88]A. Ettema and C. Haas, An X-ray photoemission spectroscopy study of interlayer charge transfer in some misfit layer compounds, Journal of Physics: Condensed Matter, 5 3817, 1993.
[89]L. G. Mar, P. Y. Timbrell and R. N. Lamb, An XPS study of zinc oxide thin film growth on copper using zinc acetate as a precursor, Thin solid films, 223 (2), 341-347, 1993.
[90]W. Hume-Rothery, Atomic diameters, atomic volumes and solid solubility relations in alloys, Acta Metallurgica, 14 (1), 17-20, 1966.
[91]G. Suresh Babu, Y. Kishore Kumar, P. Uday Bhaskar and V. Sundara Raja, Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications, Journal of Physics D: Applied Physics, 41 205305, 2008.
[92]H. Matsushita, T. Maeda, A. Katsui and T. Takizawa, Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II= Zn, Cd; III= Ga, In; IV= Ge, Sn; VI= Se), Journal of crystal growth, 208 (1-4), 416-422, 2000.
[93]R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir and K. H. Kim, Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets, Journal of Physics and Chemistry of Solids, 68 (10), 1908-1913, 2007.
[94]M. L. Liu, F. Q. Huang, L. D. Chen and I. W. Chen, A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q= S, Se), Applied Physics Letters, 94 202103, 2009.
[95]G. Suresh Babu, Y. Kishore Kumar, P. Uday Bhaskar and S. Raja Vanjari, Effect of Cu/(Zn+ Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films, Solar Energy Materials and Solar Cells, 94 (2), 221-226, 2010.
[96]M. Ibáñez, D. Cadavid, R. Zamani, N. García-Castelló, V. Izquierdo-Roca, W. Li, A. Fairbrother, J. D. Prades, A. Shavel and J. Arbiol, Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu2CdSnSe4, Chemistry of Materials, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top