跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭弘軒
研究生(外文):Hung-HsuanCheng
論文名稱:低溫環化聚醯亞胺材料開發及其聚醯亞胺薄膜性質之研究
論文名稱(外文):Development of Low-Temperature Cured Polyimides and Study on Their Thin Films Properties
指導教授:許聯崇
指導教授(外文):Steve Lien-Chung Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:111
中文關鍵詞:聚醯亞胺低溫環化聚醯亞胺薄膜性質
外文關鍵詞:Polyimide(PI)low-temperature imidizationproperties of PI film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統製備聚醯亞胺是加成聚合二胺與二酸單體於高極性溶劑形成前驅物-聚醯胺酸,加熱使聚醯胺酸轉變為聚醯亞胺,其環化溫度需高於350 oC且環化時間長,此高溫製程可能會損害相關之電子元件及產生高熱應力等問題。本研究的目的即為開發新型低溫環化製程的聚醯亞胺,其環化溫度低於250 oC且具有優良機械性質、熱性質及電學性質。
許多學者研究以添加酸性觸媒或鹼性觸媒來降低其環化溫度,觸媒的主要作用是促進Carboxylate ion對Amide carbonyl unit的親核性攻擊,產生Isoimide的中間物,降低聚醯胺酸變成聚醯亞胺的活化能,能有效降低環化溫度。在1966年 J. A. Kreuz 等人發現在聚醯胺酸內添加 Triethylamine 能有效增加環化速率,隨著溫度越高其環化速率越大且環化程度越高;在1966年 M. Oba 發現具有雙官能機團的觸媒才具有使聚醯胺酸在低溫完全環化的能力。在2004年 K. Fukukawa 等人研究鹼性觸媒只需添加少量即具有低溫環化的能力,且設計其分子使其運用在熱鹼與光鹼觸媒對光微影製程有卓越貢獻。本研究選擇五種觸媒分別是p-Hydroxybenzoic acid、4-Hydroxypyridine、Triethylamine、2,6-Dimethylpiperidine及N,N-Benzyldimethylamine。
本研究使用 Pyromellitic dianhydride (PMDA) 為二酸單體, 4,4-Oxydianiline (ODA) 為二胺單體,在溶劑 N,N-Dimethylacetamide (DMAc) 無水環境冰浴下反應七小時得到高分子量、高固含量的聚醯胺酸,固有黏度為 1.21-1.74 dL/g。觸媒添加是把 1、3、5、10 phr (parts per hundred resin) 的觸媒溶入溶劑 DMAc,再加入聚醯胺酸中使其固含量降為 15 wt%。將其溶液以刮刀塗佈方式在玻璃基板上成膜,在 80 oC 真空下使其為固態薄膜,再放置高溫爐在氮氣氣氛下以階段式升溫至該溫度熱處理兩小時。
在本研究中我們發現三個重要結論:添加鹼性觸媒不會在80 oC真空下脫水環化,本研究挑選的這五種觸媒添加 3 phr 以上都可在200 oC持溫兩小時後達到完全環化,其薄膜性質最佳為添加 5 phr 的p-ydroxybenzoic acid的聚醯亞胺薄膜有最優異的性質。在機械性質方面,添加5 phr p-hydroxybenzoic acid在250 oC 熱處理兩小時的聚醯亞胺薄膜機械性質方面,最大應力為 115 MPa 且破壞時形變量為 28 %。熱性質方面,其玻璃轉移溫度 (Tg) 為375 oC且熱膨脹係數為 22 ppm / oC。電學性質方面,其介電常數為 3.48且介電強度為 240.2 KV / mm,表面電阻大於1016 Ω且體積阻抗率大於1018 Ω.cm。化學性質方面,浸泡在水裡二十四小時所測的吸水率為 2.4 %。本研究成功開發出聚醯亞胺低溫環化製程且其聚醯亞胺薄膜具有優異的性質表現。
The conventional polyimide (PI) synthesis consists of two steps: the addition reaction of diamine and tetracarboxylic acid dianhydride in a polar aprotic solvent to form poly(amic acid) which could be cast into films, followed by thermal cyclo- dehydration to form polyimide. To fully imidze poly(amic aicd), it is necessary to heat PAA at high temperature about 350-400 oC. However, there are some limitations to application of polyimide in the electronic industry due to high temperature process might damage devices. The goal of our research is to develop low-temperature curing process of polyimide films, and the films must have excellent mechanical properties, electrical properties and chemical properties.
Many researchers indicated that adding acid- or base-catalysts could lower the imidization temperature effectively. Cyclization of amic acids deprotonated in amid group leads primarily to imides, while those protonated in carboxyl group yield most isoimides. The activation energy of cyclization is higher in the neutral form than in the ionic forms of all amic acids investigated. In 1966 J. A. Kreuz et al. studied thermal imidization by adding of tertiary amines. Tertiary amines rendered ring closure faster by a factor of 10 than the free acid. In 1996 M. Oba observed that the effective catalyst must had two or more functional groups containing active hydrogens, such as -OH, -NH2, -COOH, and -SO3H. In 2004 K. Fukukawa et al. observed that PAA could be imidized completely in the presence of 1 wt% of strong base at 200 oC in a short time. The base-catalysts could be either a thermal base generator or a photo-base generator. In our research, we have chosen five catalysts for the study. They were p-hydroxybenzoic acid, 4-hydroxypyridine, triethylamine, 2,6-dimethylpiperidine, N,N-benzyldimethylamine.
In our experiment, the PAA was synthesized from pyromellitic dianhydride (PMDA) and 4,4-oxydianiline (ODA) in N,N-dimethylacetamide (DMAc) for seven hours in ice bath. The inherent viscosity was around 1.21-1.74 dL / g. The amounts of catalysts we added were 1, 3, 5, 10 phr (parts per hundred resin) respectively. The catalysts were dissolved in solvent DMAc prior to adding in poly(amic acid). The solids content of poly(amic acid) solution finally were 15 wt%. Polyimide films were prepared by spreading a 15 wt% poly(amic acid) solution on a glass plate with doctor's blade, followed by drying at 80 oC for 6 h under reduced pressure in a vacuum oven to obtain a solid poly(amic acid) film. Finally, the solid poly(amic acid) film was cured to the temperature we desired for 2 h.
In this study, we present the results that the PAA with base-catalysts could not imidize at 80 oC under reduced pressure for 6 h, adding at least 3 phr catalysts could imide fully at 200 oC for 2 h, and the polyimide film containing 5 phr p-hydroxy- benzoic acid curing at 250 oC had the best properties. For mechanical properties, the maximum tensile strength was 115 MPa and elongation at break was 28 %. For thermal properties, the glass transition temperature was 378 oC and the coefficient of thermal expansion was 22 ppm / oC. For electrical properties, the dielectric constant was 3.48 and the breakdown voltage was 240.2 KV / mm. The surface resistance was above 1016 Ω and the bulk resistivity was above 1018 Ω.cm. For chemical properties, the water uptake at 100 RH% for 24 h was 2.4 %.
ACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
LIST OF SCHEMES xvi
1. Introduction 1
1.1. Research background 1
1.2. Research motivation 4
2. Literature review 5
2.1. Synthesis of aromatic polyimides from dianhydride and diamine 5
2.2. The characteristics of poly(amic acid) and poly(amic acid) salt 9
2.3. Thermal and chemical imidization 14
2.3.1. Mechanism of thermal imidization 14
2.3.2. Mechanism of chemical imidization 16
2.3.3. The methods for calculating the degree of imidization 18
2.4. Development of a low-temperature curing process 23
2.5. The effect of polymer orientation of polyimide films 37
2.5.1. The effect of in-plane orientation on the mechanical properties of PI films 40
2.5.2. The Effect of In-Plane Orientation on The Coefficient of Thermal Expansion 45
2.5.3. The Effect of In-Plane Orientation on the Degree of Water Uptake 47
3. Experimental 52
3.1. Materials 52
3.2. Synthesis of the PI precursor: PMDA-ODA poly(amic acid) 52
3.3. Synthesis of the PI precursor: 0.5ODPA-0.5PMDA-ODA copoly(amic acid) 52
3.4. Synthesis of the PI precursor: 0.5BPDA-0.5PMDA-ODA copoly(amic acid) 53
3.5. Synthesis of the PI precursor: 0.25BPDA-0.75PMDA-ODA copoly(amic acid) 53
3.6. Preparation of poly(amic acid) containing catalysts 54
3.7. Preparation of polyimide thin films 54
3.8. Measurements and characterization 56
3.8.1. Fourier transform infraed spectrometer (FT-IR) (Jasco model-460) 56
3.8.2. Attenuated total reflection infraed spectrometer (ATR-IR) (Jasco model-460) 57
3.8.3. Thermogravimetric analyzer (TGA) (TA Instrument Model 2050) 58
3.8.4. Differential scanning calorimetry (DSC) (PerkinElmer DSC 4000) 59
3.8.5. Thermal mechanical analysis (TMA) (TA Instrument Q400EM) 59
3.8.6. Cannon-Ubbelohde viscometer (No. 100) 60
3.8.7. Brookfield viscometer (DV-Ⅱ+Pro, UL/Y Adapter) 60
3.8.8. Universal testing machine (Shimadzu SES-1000) 61
3.8.9. Wide angle X-ray diffractometer (Bruker AXS Gmbh) 61
3.8.10. Nuclear magnetic resonance spectrometer (Bruker Avance 600NMR) 61
4. Results and Discussion 63
4.1. The viscosity of poly(amic acid) and poly(amic acid) containing catalysts 63
4.2. Determination of the poly(amic acid) salt formation 67
4.3. The degree of imidization of low-temperature cured polyimides 73
4.4. The Properties of PI Thin Films 79
4.4.1. The Thermal Properties of PI thin Films 79
4.4.2. The Mechanical Properties of Polyimide Films. 92
4.4.3. The Chemical Properties of Polyimide Films. 100
4.4.4. The Electrical Properties of Polyimide Films. 103
5. Conclusions 106
6. References 107


[1]C. E. Sroog, et al., Aromatic polypyromellitimides from aromatic polyamic acids, Journal of Polymer Science Part A: General Papers, vol. 3, pp. 1373-1390, 1965.
[2]D. Wilson, Polyimides, in Synthesis of aromatic polyimides from dianhydrides and diamines, F. W. Harris, Ed., ed UK: Blackie & Son Ltd., 1990.
[3]Y. J. Tong, et al., A New Strategy To Prepare Rodlike/Flexible Polyimide Blends through Poly(amic acid) Amine Salt Precursors, Macromolecules, vol. 34, pp. 5748-5751, 2001.
[4]M. J. Brekner, et al., Curing studies of a polyimide precursor, Journal of Polymer Science Part A: Polymer Chemistry, vol. 25, pp. 2005-2020, 1987.
[5]M. J. Brekner, et al., Curing studies of a polyimide precursor. II. Polyamic acid, Journal of Polymer Science Part A: Polymer Chemistry, vol. 25, pp. 2479-2491, 1987.
[6]Y. Tong, et al., Bulk Viscosity and Its Unstable Behavior upon Storage in Polyimide Precursor Solutions, Industrial & Engineering Chemistry Research, vol. 41, pp. 4266-4272, 2002.
[7]K. Fukukawa, et al., Thermo-base generator for low temperature solid-phase imidation of poly(amic acid), Chemistry Letters, vol. 34, pp. 1372-1373, 2005.
[8]Y. Echigo, et al., Preparation of poly(bis(trialkylammonium) 4,4′-oxydiphenylenepyromellitamate) films: A useful polyimide precursor film, Journal of Polymer Science Part A: Polymer Chemistry, vol. 35, pp. 2493-2499, 1997.
[9]J. Yang, et al., A Water-Soluble Polyimide Precursor: Synthesis and Characterization of Poly(amic acid) Salt, Macromolecular Research, vol. 12, pp. 263-268, 2004.
[10]D. Cai, et al., Synthesis, characterization and hydrolytic stability of poly (amic acid) ammonium salt, Polymer Degradation and Stability, vol. 96, pp. 2174-2180, 2011.
[11]M. Konieczny, et al., Curing studies of the meta, para and 50/50 mixed isomers of the ethyl ester of 4,4'-oxydianiline pyromellitic dianhydride polyamic acid, Polymer, vol. 38, pp. 2969-2979, 1997.
[12]J. A. Kreuz, et al., Studies of Termal Cyclization of Polyamic acids and Tertiary Amine Salts, Journal of Polymer Science Part A-1-Polymer Chemistry, vol. 4, pp. 2607-2616, 1966.
[13]M. M. Koton, et al., Investigation of the kinetics of chemical imidization, Polymer Science U.S.S.R., vol. 24, pp. 791-800, 1982.
[14]R. J. Cotter, et al., The Synthesis of N-Substituted Isomaleimides, The Journal of Organic Chemistry, vol. 26, pp. 10-15, 1961.
[15]R. J. W. Reynolds, et al., Amine salts of polypyromellitamic acids, Journal of Polymer Science Part C: Polymer Symposia, vol. 23, pp. 45-56, 1968.
[16]R. W. Snyder, et al., FTIR studies of polyimides: thermal curing, Macromolecules, vol. 22, pp. 4166-4172, 1989/11/01 1989.
[17]C. A. Pryde, IR studies of polyimides. I. Effects of chemical and physical changes during cure, Journal of Polymer Science Part A: Polymer Chemistry, vol. 27, pp. 711-724, 1989.
[18]S. Diaham, et al., Thermal imidization optimization of polyimide thin films using Fourier transform infrared spectroscopy and electrical measurements, Thin Solid Films, vol. 519, pp. 1851-1856, 2011.
[19]J.-H. Chang, et al., Thermal cyclization of the poly(amic acid): thermal, mechanical, and morphological properties, European Polymer Journal, vol. 36, pp. 2185-2191, 2000.
[20]M. Kotera, et al., Imidization processes of aromatic polyimide by temperature modulated DSC, Polymer, vol. 41, pp. 3615-3619, 2000.
[21]F. Cser, et al., Modulated Differential Scanning Calorimetry, Journal of Thermal Analysis and Calorimetry, vol. 50, pp. 727-744, 1997.
[22]G. Van Assche, et al., Modulated differential scanning calorimetry: isothermal cure and vitrification of thermosetting systems, Thermochimica Acta, vol. 268, pp. 121-142, 1995.
[23]A. V. Yakimanskii, et al., Quantum chemical study of cyclization mechanism in polyamic acids, Polymer Science U.S.S.R., vol. 28, pp. 919-927, 1986.
[24]A. Nelson, et al., Catalytic activity of benzimidazole in the imidization of polyamic acids, Journal of Applied Polymer Science, vol. 36, pp. 243-248, 1988.
[25]M. Oba, Effect of curing accelerators on thermal imidization of polyamic acids at low temperature, Journal of Polymer Science Part a-Polymer Chemistry, vol. 34, pp. 651-658, 1996.
[26]Y. Kawamonzen, et al., Study of novel curing acceleration catalysts enabling low temperature solid-phase imidization of polyamic acids, Abstracts of Papers of the American Chemical Society, vol. 222, pp. 280-PMSE, Aug 2001.
[27]Y. Ding, et al., Polyimide membranes derived from poly(amic acid) salt precursor polymers. 1. synthesis and characterization, Macromolecules, vol. 35, pp. 905-911, 2002.
[28]Y. Ding, et al., Polyamic acid salts: Novel precursors for fabrication of composite polyimide membranes presented at the American Chemical Society, PMSE, 2001.
[29]K. Fukukawa, et al., Efficient catalyst for low temperature solid-phase imidization of poly(amic acid), Chemistry Letters, vol. 33, pp. 1156-1157, 2004.
[30]K. Fukukawa, et al., Direct patterning of poly(amic acid) and low-temperature imidization using a photo-base generator, Polymers for Advanced Technologies, vol. 17, pp. 131-136, 2006.
[31]M. L. Wallach, Structure–property relations of polyimide films, Journal of Polymer Science Part A-2: Polymer Physics, vol. 6, pp. 953-960, 1968.
[32]P. S. Ho, et al., Molecular structure and thermal/mechanical properties of polymer thin films, Journal of Physics and Chemistry of Solids, vol. 55, pp. 1115-1124, 1994.
[33]H. Han, et al., Water diffusion and sorption in films of high-performance poly(4,4′-oxydiphenylene pyromellitimide): effects of humidity, imidization history and film thickness Polymer, vol. 36, pp. pp. 1663-1672, 1995.
[34]J. Seo, et al., Water sorption behaviour of polyimide thin films with various internal linkages in the dianhydride component, Polymer Degradation and Stability, vol. 77, pp. 477-482, 2002.
[35]J.-H. Jou, et al., Coating thickness effect on the orientation and thermal expansion coefficient of polyimide films, Polymer, vol. 33, pp. 967-974, 1992.
[36]R. M. Ikeda, A mechanical effect of orientation, Journal of Polymer Science Part B: Polymer Letters, vol. 4, pp. 353-359, 1966.
[37]S. Z. D. Cheng, et al., Organosoluble, segmented rigid-rod polyimide film. 1. Structure formation, Macromolecules, vol. 24, pp. 5856-5862, 1991.
[38]B. D. Cullity, et al., Elements of X-ray diffraction, in Polymers, Third ed: Prentice-Hall, Inc., 2001, pp. 539-553.
[39]S. J., et al., Effect of isomeric oxydiphenylene diamine on the water sorption behavior of high temperature polyimide thin films, Polymer Journal, vol. 31, pp. 324-331, 1999.
[40]H. Nomura, et al., Molecular Orientation in Polyimide Films Having Rodlike Molecular Skeleton Formed on Silicon Substrate, Japanese Journal of Applied Physics, vol. 32, pp. 3933-3937, 1993.
[41]H. Nomura, et al., Effect of Thermal Curing on Molecular Orientation in Polyimide Films Having Rodlike Molecular Skeleton Formed on Substrates, Japanese Journal of Applied Physics, vol. 35, pp. 5825-5830, 1996.
[42]H.-C. Liou, et al., Study of out-of-plane elastic properties of PMDA-ODA and BPDA-PDA polyimide thin films, Thin Solid Films, vol. 323, pp. 203-208, 1998.
[43]M. Hasegawa, et al., Spontaneous molecular orientation of polyimides induced by thermal imidization. I. Uniaxial stretching of polyamic acid film, Journal of Polymer Science Part B: Polymer Physics, vol. 32, pp. 1299-1303, 1994.
[44]M. Hasegawa, et al., Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization. 2. In-Plane Orientation, Macromolecules, vol. 29, pp. 7897-7909, 1996.
[45]M. Hasegawa, et al., Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization. 3. Component Chain Orientation in Binary Polyimide Blends, Macromolecules, vol. 30, pp. 5745-5752, 1997.
[46]J. Ishii, et al., Spontaneous molecular orientation of polyimides induced by thermal imidization (4): Casting- and melt-induced in-plane orientation, European Polymer Journal, vol. 46, pp. 69-80, 2010.
[47]S. Ebisawa, et al., Spontaneous molecular orientation of polyimides induced by thermal imidization (5). Effect of ordered structure formation in polyimide precursors on CTE, European Polymer Journal, vol. 46, pp. 283-297, 2010.
[48]J. Ishii, et al., Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films, European Polymer Journal, vol. 46, pp. 681-693, 2010.
[49]M. B. Saeed, et al., Effects of monomer structure and imidization degree on mechanical properties and viscoelastic behavior of thermoplastic polyimide films, European Polymer Journal, vol. 42, pp. 1844-1854, 2006.
[50]H. Inoue, et al., Comparison of one-pot and two-step polymerization of polyimide from BPDA/ODA, Journal of Applied Polymer Science, vol. 60, pp. 123-131, 1996.
[51]J.-H. Chang, et al., Two-step thermal conversion from poly(amic acid) to polybenzoxazole via polyimide: Their thermal and mechanical properties, Journal of Polymer Science Part B: Polymer Physics, vol. 38, pp. 2537-2545, 2000.
[52]M. Ree, et al., Influences of chain rigidity, in‐plane orientation, and thickness on residual stress of polymer films vol. 75, pp. pp. 1410-1419, 1994.
[53]J. F. Rabek, Experimental Methods in Polymer Chemistry-Physical Principles and Applications. New York: John Wiley and Sons, 1980.
[54]汪建民, 材料分析: 中國材料科學學會, 1998.
[55]S.-J. Park, et al., A study on dielectric characteristics of fluorinated polyimide thin film Journal of Colloid and Interface Science, vol. 272, pp. 384-490, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top