跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林啟航
研究生(外文):Chi-HangLin
論文名稱:4384 Al-Si-Cu-Ni-Mg鋁合金切削斷屑性之時效處理效應
論文名稱(外文):Effects of Aging Treatment on Cutting Chip Breakability of 4384 Al-Si-Cu-Ni-Mg Aluminum Alloy
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenLi-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:含鉛黃銅切削性斷屑率Al-Si-Cu-Ni-Mg鋁合金人工峰值時效
外文關鍵詞:Leaded brassMachinabilityChip breakabilityAl-Si-Cu-Ni-Mg aluminum alloyArtificial peak-aging treatment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
  現今工業界製造通訊接頭等高速切削加工件以含鉛黃銅為主,其中鉛易造成環境汙染,因此開發替代型材料為現今積極議題。鋁合金擁有輕量化、低成本和高比強度等優點,同時兼具不危害環境之要求,為替代型環保材料的首選開發方向。在車床切削過程中,若切屑呈現連續狀,則易導致加工不順暢,因此斷屑性為評量切削性之重要指標。
  本研究選用之4384 Al-Si-Cu-Ni-Mg鋁合金擁有大量硬脆第二相,因此在鋁合金中具備優異的切削斷屑性;為了達到含鉛黃銅之斷屑水準,研究中利用時效處理進一步提升4384 Al-Si-Cu-Ni-Mg鋁合金之斷屑率。研究前期釐清時效處理對4384 Al-Si-Cu-Ni-Mg鋁合金切屑形貌之影響,並從中挑選出斷屑率最佳者-人工峰值時效材。研究後段藉4384 Al-Si-Cu-Ni-Mg鋁合金與C3604含鉛黃銅彼此間材料特性之評比,進行Al-Si-Cu-Ni-Mg鋁合金應用於通訊接頭之適用性探討,以滿足應用面之考量。
  研究結果顯示,4384 Al-Si-Cu-Ni-Mg鋁合金之基地相α-Al硬度值與斷屑率成正比。主要是當基地相變形阻抗提升時,切削加工硬化層之厚度會跟著下降,是故切削過程中α-Al容易破裂,有助於縮小切屑尺寸。因此在4384鋁合金系列中,基地相硬度最高之人工峰值時效材具備最佳斷屑率。
  4384 Al-Si-Cu-Ni-Mg鋁合金進行人工峰值時效處理後,其中硬度、降伏強度和切削性皆逼近C3604含鉛黃銅之水準,耐候性和電磁波遮蔽特性之表現甚至超越了C3604含鉛黃銅。因此4384 Al-Si-Cu-Ni-Mg鋁合金之人工峰值時效材具備替代含鉛黃銅應用於通訊接頭等高速切削加工件之潛力。
  Communication connectors are almost manufactured by leaded brass. However, using lead easily causes environmental pollution, so developing substituted material is the big issue. Aluminum alloys have many advantages, such as light, low-cost, high specific strength, and environmental-friendly. Thus aluminum alloys are preferred for environmental-friendly material. The continuous chips easily disturb the cutting process. Hence chip segmentation is the important indicator for machinability.
  4384 Al-Si-Cu-Ni-Mg aluminum alloy has excellent chip breakability in aluminum alloys as a result of many hard and brittle second-phases. In order to achieve the chip breaking standard of leaded brass, we use aging treatment to increase the chip breakability of 4384 Al-Si-Cu-Ni-Mg alloy. One part of this study probes effects of aging treatment to chip formation on 4384 Al-Si-Cu-Ni-Mg aluminum alloy. It shows that the artificial peak-aging treatment can supply the best chip breakability. For satisfying application, the other part of this study discusses that the feasibility of 4384 Al-Si-Cu-Ni-Mg aluminum alloy can apply in the communication connectors by comparing material characteristics of 4384 Al-Si-Cu-Ni-Mg aluminum alloy and C3604 leaded brass.
  The α-Al hardness value of 4384 Al-Si-Cu-Ni-Mg aluminum alloy is directly proportional to chip breakability. When the deformation resistance of α-Al increase, working hardening layer decrease. In cutting process, α-Al is easy to break, which could reduce the cutting chip size, so the artificial peak-aging treated 4384 aluminum alloy has the best chip breaking factor in this material.
  The material characteristics of 4384 Al-Si-Cu-Ni-Mg aluminum alloy enhance by artificial peak-aging treatment. The hardness, yield stress and chip breakability are more close to C3604 leaded brass. Weather resistance and electromagnetic shielding properties are even beyond C3604 leaded brass. Therefore, the artificial peak-aging treated 4384 Al-Si-Cu-Ni-Mg aluminum alloy is expected to replace the leaded brass and applied in communication connectors.
摘要 II
Abstract III
致謝 V
總目錄 VII
表目錄 IX
圖目錄 X

第一章 前言 1
第二章 文獻回顧 2
2-1 通訊接頭常用之製造材料-Cu-Zn-Pb系黃銅合金 2
2-2 鋁合金之切屑形貌 2
2-3 Al-Si-Cu-Ni-Mg系鋁合金 4
2-3-1 Al-Si-Cu-Ni-Mg系鋁合金之第二相 4
2-3-2 Al-Si-Cu-Ni-Mg系鋁合金之人工時效行為 5
第三章 實驗方法 14
3-1 研究架構 14
3-2 材料準備及4384鋁合金時效熱處理 14
3-2-1 材料準備 14
3-2-2 4384鋁合金時效熱處理 14
3-3 微觀組織解析 15
3-4 切削加工測試 16
3-5 拉伸試驗 17
3-6 硬度量測 17
3-7 耐候性及電磁波遮蔽特性之評估 18
第四章 實驗結果 31
4-1 微觀組織 31
4-1-1 4384鋁合金熱處理前後之微觀組織變化 31
4-1-2 C3604含鉛黃銅之微觀組織 32
4-2 切削加工測試結果 32
4-3 拉伸試驗結果 32
4-4 硬度量測結果 33
4-5 動電位極化曲線及電導率測試結果 34
第五章 討論 53
5-1 4384鋁合金切削斷屑率之影響因素 53
5-1-1 拉伸延性及韌性對4384鋁合金切削斷屑率之影響 53
5-1-2 第二相型態對4384鋁合金切削斷屑率之影響 54
5-1-3 析出物與基地相界面關係對4384鋁合金切削斷屑率之影響 55
5-1-4 基地相硬度對4384鋁合金切削斷屑率之影響 55
5-2 4384鋁合金切削斷屑率之基地強化效應 56
5-3 4384鋁合金替代C3604含鉛黃銅之適用性評估 57
第六章 結論 66
參考文獻 67
[1]V. Songmene, R. Khettabi, I. Zaghbani, J. Kouam, A. Djebara, “Machining and Machinability of Aluminum Alloys, École De Technologie Supérieure,  Department of Mechanical Engineering, p. 379-383, Canada, 2010.

[2]M. Kamiya, T. Yakou, “Role of Second-phase Particles in Chip Breakability in Aluminum Alloys, International Journal of Machine Tools and Manufacture, vol. 48, pp. 688-697, 2008.

[3]Y. Yang, K. Yu, Y. Li, D. Zhao, X. Liu, “Evolution of Nickel-rich Phases in Al-Si-Cu-Ni-Mg Piston Alloys with Different Cu Additions, Materials and Design, vol. 33, pp. 220-225, 2012.

[4]Y. Yang, Y. Li, W. Wu, D. Zhao, X. Liu, “Effect of Existing Form of Alloying Elements on the Microhardness of Al-Si-Cu-Ni-Mg Piston Alloy, Materials Science and Engineering: A, vol. 528, pp. 5723-5728, 2011.

[5]N. A. Belov, D. G. Eskin, N. N. Avxentieva, “Constituent Phase Diagrams of the Al-Cu-Fe-Mg-Ni-Si System and Their Application to the Analysis of Aluminum Piston Alloys, Acta Materialia, vol. 53, pp. 4709-4722, 2005.

[6]W. F. Smith, “Structure and Properties of Engineering Alloys, McGraw-Hill Series in Materials Science and Engineer, 2nd ed. , p. 243-255, 1993.

[7]Metals Handbook, “Metallography, Structures and Phase Diagram, American Society for Metals, Metals Park, Ohio, vol. 8, 8th ed., 1973.

[8]G. Pantazopoulos, A. Vazdirvanidis, “Failure Analysis of a Fractured Leaded-Brass (CuZn39Pb3) Extruded Hexagonal Rod Journal of Failure Analysis and Prevention, vol. 8, pp. 218-222, 2008.

[9]G. Pantazopoulos, “Leaded Brass rods C38500 for Automatic Machining Operations: A Technical Report, Journal of Materials Engineering and Performance, vol. 11, pp. 402-407, 2002.

[10]C. Vilarinho, J. P. Davimb, D. Soares, F. Castro, J. Barbosa, “Influence of the Chemical Composition on the Machinability of Brasses, Journal of Materials Processing Technology, vol. 170, pp. 441-447, 2005.

[11]P. García, S. Rivera, M. Palacios, J. Belzunce, “Comparative Study of the Parameters Influencing the Machinability of Leaded Brasses, Engineering Failure Analysis, vol. 17, pp. 771-776, 2010.

[12]H. Imai, Y. Kosaka, A. Kojima, S. Li, K. Kondoh, J. Umeda, H. Atsumi, “Characteristics and Machinability of Lead-free P/M Cu60-Zn40 Brass Alloys Dispersed with Graphite, Powder Technology, vol. 198, pp. 417-421, 2010.

[13]S. Li, K. Kondoh, H. Imai, H. Atsumi, “Fabrication and Properties of Lead-free Machinable Brass with Ti Additive by Powder Metallurgy, Powder Technology, vol. 205, pp. 242-249, 2011.

[14]趙芝眉,「金屬切削原理」,科技圖書股份有限公司,第106~109頁,民國78年。

[15]H. A. Kishawy, M. Dumitrescu, E. G. Ng, M. A. Elbestawi, “Effect of Coolant Strategy on Tool Performance, Chip Morphology and Surface Quality During High-speed Machining of A356 Aluminum Alloy, International Journal of Machine Tools and Manufacture, vol. 45, pp. 219-227, 2005.

[16]H. Schulz, T. Moriwaki, “High-Speed Machining, Annals of the CIRP, vol. 41, p.637, 1992.

[17]A. Manna, B. Bhattacharayya, “A Study on Machinability of Al/SiC-MMC, Journal of Materials Processing Technology, vol. 140, pp. 711-716, 2003.

[18]M. Tash, F. H. Samuel, F. Mucciardi, H. W. Doty, S. Valtierra, Effect of Metallurgical Parameters on the Machinability of Heat-treated 356 and 319 Aluminum Alloys, Materials Science and Engineering A, vol. 434, pp. 207-217, 2006.

[19]Y. Zedan, F. H. Samuel, A. M. Samuel, H. W. Doty, “Effects of Fe Intermetallics on the Machinability of Heat-treated Al-(7-11)%Si Alloys, Journal of Materials Processing Technology, vol. 210, pp. 245-257, 2010.

[20]H. Schulz, E. Abele, A. Sahm, “Material Aspects of Chip Formation in HSC Machining, CIRP Annals-Manufacturing Technology, vol 50, pp. 45-48, 2001.

[21]C. Müller, R. Blümke, “Influence of Heat Treatment and Cutting Speed on Chip Segmentation of Age Hardenable Aluminum Alloy, Materials Science and Technology, vol. 17, pp. 651-654, 2001.

[22]J. E. Hatch, “Aluminum Properties and Physical Metallurgy, American Society for Metals, Metals Park, Ohio, p. 175-193, 1984.

[23]M. Zeren, “The Effect of Heat-Treatment on Aluminum-Based Piston Alloys, Materials and Design, vol. 28, pp. 2511-2517, 2007.

[24]P. Y. Zhu, Q. Y. Lin, T. X. Hou, “Spheroidization of Eutectic Silicon in Al-Si Alloy, AFS Transactions, vol. 93, pp. 609-614, 1985.

[25]關聖立,「異徑雙輪式連續鑄造Al-Si合金薄片微觀組織控制與拉伸性質之間關係探討」,國立成功大學材料科學及工程學系,博士論文,第68頁,民國89年。

[26]M. M. Farag, M. C. Flemings, “Structure and Strength of Al, Cu-Al3Ni Directionally Solidified Composites, Metallurgical Transactions A, vol. 6A, pp. 1009-1015, 1975.

[27]N. Terao, “Beneficial Influence of Copper and Manganese Alloying Elements on the Mechanical Properties of Metallic Composite Materials Based on the Eutectic Al-5.7%Ni Alloy, Journal of Materials Science, vol. 20, pp. 4021-4026,1985.

[28]張云瀚,「A384 鋁合金沖蝕磨耗特性之摩擦攪拌效應探討」,國立成功大學材料科學及工程學系,碩士論文,第56~58頁,民國97年。

[29]蘇冠緯,「摩擦攪拌製程對4832鋁合金振動破壞特性影響之研究」,國立成功大學材料科學及工程學系,碩士論文,第78頁,民國99年。

[30]M. J. Starink, V. Abeels and P. van Mourik, “Lattice Parameter and Hardness Variations Resulting from Precipitation and Misfit Accommodation in A Particle-Reinforced Al-Si-Cu-Mg alloy, Materials Science and Engineering, vol. A163, No.1, pp. 115-125, 1993.

[31]S. Shivkumar, C. Keller, D. Apelian, “Aging Behavior in Cast Al-Si-Mg Alloys, AFS Transactions, vol. 98, pp. 905-911, 1990.

[32]P. G. Shewmon, “Transformations in Metals, McGraw-Hill Book Company, p. 311-316, 1969.

[33]劉中偉,「片狀石墨鑄鐵與鋁-矽系合金之矽砂沖蝕磨耗特性研究」,國立成功大學材料科學及工程學系,博士論文,第31~32頁,民國87年。

[34]柯賢文,「腐蝕及其防制」,全華科技圖書股份有限公司,第69~75頁,民國84 年。

[35]鮮祺振、劉國橋,「金屬腐蝕及其控制」,財團法人徐氏基金會,第61~66頁,民國84 年。

[36]張連壁,「電磁脈衝學與電磁屏蔽」,五南圖書出版股份有限公司,第78~80頁,民國96年。

[37]陳永增、鄧惠源,「非破壞檢測」,全華圖書有限公司,第6-20頁,民國88 年。

[38]Q.G. Wang, C.H. Cáceres, “On the Strain Hardening Behaviour of Al-Si-Mg Casting Alloys, Materials Science and Engineering A, vol. 234-236, pp. 106-109, 1997.

[39]M Tiryakioğlu , The Effect of Solution Treatment and Artificial Aging on the Work Hardening Characteristics of a Cast Al-7%Si-0.6%Mg Alloy, Materials Science and Engineering A, vol. 427, pp. 154-159, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top