跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許維哲
研究生(外文):Wei-ZheXu
論文名稱:夾持力對燃料電池雙極板界面電化學行為之影響研究
論文名稱(外文):The Effect of Clamping Pressure on the Electrochemical Behavior at the Fuel Cell Bipolar Plate Interface
指導教授:蔡文達蔡文達引用關係
指導教授(外文):Wen-Ta Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:雙極板夾持力界面電化學行為
外文關鍵詞:bipolar plateclamping pressureelectrochemical behavior of interface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本研究為了瞭解質子交換膜燃料電池堆之中,雙極板界面的電化學行為,設計模擬燃料電池電化學測試裝置,以1 M H2SO4水溶液模擬電解質環境,並對雙極板施予各種夾持力來觀測其界面的電化學行為。試片選用一般石墨雙極板以及利用物理氣相蒸鍍沉積於316L不銹鋼上的Zr鍍層。研究結果發現,做為氣體放出反應的水氧化與質子還原反應皆因施加壓力的增加而受到抑制,其原因是因為多孔介質孔隙率的下降,氣體產物的傳輸受到了阻礙並累積於界面所導致;而氧還原反應則是會受到施加壓力的增加而增強,其原因是因為壓力直接施加於液態電解質,增加了反應物的壓力或是濃度所導致。此外Zr鍍層的金屬溶出反應不直接受壓力的影響,並且壓力的增加導致了雙極板所處的環境更具有還原性。
The effect of clamping pressure on the electrochemical behavior at the bipolar plate interface in the PEM fuel cell stack was studied by employing a self-designed simulating cell. The simulating cell consisted of a layer of non-woven fabric which was filled with 1M H2SO4 solution, acting as the electrolyte/separator assembly. A graphite plate or a Zr-coated 316L stainless steel plate was used as the working electrode. The experimental results are described as followings : (1) The cathodic reaction on the graphite electrode consisted of proton and oxygen reduction reaction. The latter reduction reaction rate increases with increasing clamping pressure, while the former is less affected. (2) The anodic reaction occurred on graphite electrode is mainly associated with oxygen evolution resulting from the oxidation of water. The reaction rate decreases with increasing clamping pressure. (3) On Zr-coated 316L SS electrode, the reduction rate (especially proton reduction ) increases with increasing pressure. The anodic reaction occurred on this electrode is mainly governed by the passivation of Zr.
中文摘要 I
Abstract II
誌謝 III
第一章 前言 1
第二章 理論基礎與文獻回顧 2
2.1 燃料電池的種類與原理 2
2.2 質子交換膜燃料電池的原理與構造 6
2.2.1 質子交換膜 7
2.2.2 觸媒層 7
2.2.3 氣體擴散層 8
2.2.4 雙極板 8
2.2.5 雙極板的特性需求 8
2.2.6 雙極板的發展與材料選擇 11
2.2.7 金屬雙極板的腐蝕 12
2.3 壓力與雙極板界面 18
2.3.1 夾持力對界面接觸阻抗的影響 18
2.3.2 夾持力對氣體擴散層的影響 19
2.3.3 夾持力對質子交換膜燃料電池效能的影響 20
2.3.4 雙極板界面的電化學行為 20
第三章 實驗方法與步驟 26
3.1 石墨雙極板界面的電化學行為測試 26
3.1.1. 電化學測試裝置的設置 26
3.1.2. 電化學行為測試 26
3.2 鍍鋯之不銹鋼雙極板界面的電化學測試 27
3.2.1. 試片的組成與製備 27
3.2.2. 鋯鍍層的性質分析 27
3.2.3. 電化學行為測試 28
第四章 結果與討論 31
4.1 石墨雙極板的電化學測試 31
4.1.1 動電位極化曲線測試與不同電位之定電位測試 31
4.1.1.1 理論平衡電位計算 32
4.1.1.2 陽極區電化學行為 34
4.1.1.3 陰極區電化學行為 36
4.1.2 不同壓力下之定電位測試 38
4.1.3 循環伏安測試 42
4.2 鋯鍍層雙極板的電化學測試 60
4.2.1 材料性質分析 60
4.2.2 動電位極化曲線測試 60
4.2.3 循環伏安測試 61
4.2.4 電化學阻抗頻譜測試測試 63
第五章 結論 72
參考文獻 73
1.V. Mehta and Cooper, J.S., Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114 (2003), p.32-53
2.Muammer Koc, Sasawat Mahabunphachai, Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding. Journal of Power Sources, 172 (2007), p.725-733
3.Brent D. Cunningham, Donald G. Baird, Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer. Journal of Power Sources, 168 (2007), p.418-425
4.Taro Kinumoto, Minoru Inaba, Yoko Nakayama, Kazuhito Ogata, Ryota Umebayashi, Akimasa Tasaka, Yasutoshi Iriyama, Takeshi Abe, Zempachi Ogumi, Durability of perfluorinated ionomer membrane against hydrogen peroxide, Journal of Power Sources, 158 (2006), p.1222-1228
5.T Ous, C Arcoumanis, Effect of compressive force on the performance of a proton exchange membrane fuel cell. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221 (2007), p.1067-1074
6.Xinting Wang, Ying Songb, Bi Zhang, Experimental study on clamping pressure distribution in PEM fuel cells. Journal of Power Sources, 179 (2008), p.305-309
7.Woo-Kum Lee, Chien-Hsien Ho, J.W. Van Zee, Mahesh Murthy, The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. Journal of Power Sources, 84 (1999), p.45-51
8.W.R. Chang, J.J. Hwang, F.B. Weng, S.H. Chan, Effect of Clamping Pressure on the Performance of a PEM Fuel Cell. Journal of Power Sources, 166 (2007), p.149-154
9.Chih-Yung Wen, Yu-Sheng Lin, Chien-Heng Lu, Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack. Journal of Power Sources, 192 (2009), p.475-485
10.Linda Carrette, K. Andreas Friedrich, and Ulrich Stimming, Fuel Cells: Principles, Types, Fuels, and Applications. Chemphyschem, 1 (2000), p.162-193
11.A. Kirubakaran , Shailendra Jain, R.K. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, 13 (2009), p.2430-2440
12.Paolo Agnolucci, Economics and market prospects of portable fuel cells, International Journal of Hydrogen Energy, 32 (2007), p. 4319-4328
13.J.M. Andujar, F. Segura, Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13 (2009), p.2309-2322
14.Muhsin Tunay Gencoglu, Zehra Ural, Design of a PEM fuel cell system for residential application, International Journal of Hydrogen Energy, 34 (2009), p.5242-5248
15.S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 35 (2010), p.9349-9384
16.Jaewan Park, Xianguo Li, Effect of flow and temperature distribution on the performance of a PEM fuel cell stack, Journal of Power Sources, 162 (2006), p.444-459
17.Je Seung Lee, Nguyen Dinh Quan, Jung Min Hwang, Sang Deuk Lee, Honggon Kim, Hyunjoo Lee, and Hoon Sik Kim, Polymer Electrolyte Membranes for Fuel Cell, J.Ind. Eng. Chem., 12 (2006), p.175-183
18.W.H.J. Hogarth, J.C. Diniz da Costa, G.Q.(Max) Lu, Solid acid membranes for high temperature ()140 ◦C) proton exchange membrane fuel cells, Journal of Power Sources, 142 (2005), p.223-237
19.L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, M.J. Lazaro, Synthesis and performance of platinum supported on ordered mesoporous carbons as catalyst for PEM fuel cells: Effect of the surface chemistry of the support, International Journal of Hydrogen Energy, 36 (2011), p.9805-9814
20.Chao Wang, Hideo Daimon, Taigo Onodera, Tetsunori Koda, and Shouheng Sun, A General Approach to the Size- and Shape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen, Angewandte Chemie International Edition, 47 (2008), p. 3588-3591
21.Xuan Chenga, Zheng Shi, Nancy Glass, Lu Zhang, Jiujun Zhang, Datong Song, Zhong-Sheng Liu, Haijiang Wang, Jun Shen, A review of PEM hydrogen fuel cell contamination Impacts mechanisms and mitigation, Journal of Power Sources, 165 (2007), p.739-756
22.Sehkyu Park, Branko N. Popov, Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance, Fuel, 90 (2011), p.436-440
23.Haruki Tsuchiyaa, Osamu Kobayashi, Mass production cost of PEM fuel cell by learning curve, International Journal of Hydrogen Energy, 29 (2004), p.985-990
24.H. Tawfika, Y. Hunga, D. Mahajan, Metal bipolar plates for PEM fuel cell—A review, Journal of Power Sources, 163 (2007), p.755-767
25.Allen Hermanna, Tapas Chaudhuria, Priscila Spagnol, Bipolar plates forPEMfuel cells:Areview, International Journal of Hydrogen Energy, 30 (2005), p.1297-1302
26.Heli Wang, Mary Ann Sweikart, John A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115 (2003), p.243-251
27.Heli Wang, John A. Turner, Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 128 (2004), p.193-200
28.M.P. Brady, K. Weisbrod, I. Paulauskas, R.A. Buchanan, K.L. More, H. Wang, M. Wilson, F. Garzon, L.R., Walker, Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates, Scripta Materialia, 50 (2004), p.1017-1022
29.L. Ma, S. Warthesen , D. A. Shores, Evaluation of materials for bipolar plates in PEMFCs, Journal of New Materials for Electrochemical Systems, 3 (2000), p.221-228
30.Renato A. Antunes, Mara Cristina L. Oliveira, Gerhard Ett, Volkmar Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 35 (2010), p.3632-3674
31.Shaker Haji, Analytical modeling of PEM fuel cell i–V curve, Renewable Energy, 36 (2011), p.451-458
32.D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, Bipolar plate materials for solid polymer fuel cells, Journal of Applied Electrochemistry, 30 (2000), p.101-105
33.Wonseok Yoon, Xinyu Huang, Paul Fazzino, Kenneth L. Reifsnider, Michael A. Akkaoui, Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells, Journal of Power Sources, 179 (2008), p.265-273
34.Ching-Yuan Bai, Ming-Der Ger, Min-Sheng Wu, Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides, International Journal of Hydrogen Energy, 34 (2009), p.6778-6789
35.J. Jayaraj, Y.C. Kim, H.K. Seok, K.B. Kim, E. Fleury, Development of metallic glasses for bipolar plate application, Materials Science and Engineering, A 449-451 (2007), p.30-33
36.Mark Mathias, Joerg Roth, Jerry Fleming and Werner Lehnert, Diffusion media materials and characterization. In Handbook of fuel cells: fundamentals, technology and applications (Eds W. Vielstich, A. Lamm, and H. A. Gasteiger), 2003, chapter 42, vol. 3, pp. 517-537
37.Jui-Hsiang Lin, Wei-Hung Chen, Yen-Ju Su, Tse-Hao Ko, Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell, Fuel, 87 (2008), p.2420-2424
38.C.P. Gardiner, R.E. Melchers, Corrosion of mild steel in porous media, Corrosion Science, 44 (2002), p.2459-2478
39.H. Vogt, R.J. Balzer, The bubble coverage of gas-evolving electrodes in stagnant electrolytes, Electrochimica Acta, 50 (2005), p.2073-2079
40.Mingyong Wang, Zhi Wang, Zhancheng Guo, Understanding of the intensified effect of super gravity on hydrogen evolution reaction, International Journal of Hydrogen Energy, 34 (2009), p.5311- 5317
41.Xukun Luo, Guoqiang Yang, D.J. Lee, Liang-Shih Fan, Single bubble formation in high pressure liquid-solid suspensions, Powder Technology, 100 (1998), p103-112
42.Y. Li, G.Q. Yang, J.P. Zhang, L.-S. Fan, Numerical studies of bubble formation dynamics in gas–liquid–solid fluidization at high pressures, Powder Technology, 116 (2001), p246-260
43.X. Li, Y. C. Yortsos, Theory of multiple bubble growth in porous media by solute diffusion, Chemical Engineering Science, 50 (1995), p.1247-1271
44.A. Nishikata, V. Ichihara, V. Hayashi, and T. Tsuru, Influence of Electrolyte Layer Thickness and pH on the Initial Stage of the Atmospheric Corrosion of Iron, J. Electrochem. Soc., 1997 (144), p.1244-1253

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top