跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張弘儒
研究生(外文):Hung-JuChang
論文名稱:以壓電式噴墨製程製備金屬微接點及導線之研究
論文名稱(外文):Fabrication of Metallic Micro-joint and Micro-conductive Line by Piezoelectric Ink-jet Printing Method
指導教授:黃文星黃文星引用關係
指導教授(外文):Weng-Sing Hwang
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:157
中文關鍵詞:噴印技術電腦模擬精微結構導線
外文關鍵詞:Ink-jet printing processSimulationMicro-jointMicro-conductive line
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用噴印技術製造精微結構可以降低成本減少汙染,是一個極具吸引力的技術。不過噴印的品質受很多因素影響,為了得到好的精微結構,如何得到好的液滴行為是很重要的事情,本研究針對高溫跟常溫的噴墨進行研究,探討噴印的參數對其精微結構品質的影響。
在高溫壓電噴墨的實驗部分,選取熔融無鉛銲錫Sn-Ag-Cu為墨水,改變不同的tfall時間得到不同的液滴型態,在模擬方面主要是改變噴墨頭邊界的壓力波,得到不同的壓力波型態,藉由模擬結果與實驗結果的比較來說明tfall時間對最後噴墨管內的壓力波所造成的影響。另外使用商業軟體Flow-3D來模擬銲錫液滴撞擊凝固的情形,並採用多顆液滴的模擬去得到熔融銲錫在不同液滴間距及噴覆頻率的導線品質。
常溫噴墨部分則是先選取奈米銀懸浮溶液以及硝酸銀水溶液,以這兩種水系材料為本研究的墨水。以不同的液滴間距及基板溫度為實驗條件去進行實驗,從所噴印的點陣列及導線結果來比較這兩種墨水的優劣,並且找到最適合噴印的參數。接著選用不同濃度的硝酸銀水溶液進行實驗,比較不同濃度墨水的噴印結果,找出濃度5M的硝酸銀水溶液是最適合應用在常溫噴墨製程,並藉由觀察不同濃度硝酸銀水溶液的乾燥行為,找出硝酸銀水溶液的乾燥機制。

Piezoelectric inkjet printing technology is a great manufacturing technology to produce micro-joint and micro-conductive line for the need of reduction of costs and environmental impact. The droplet behavior would effects the quality of the micro-joint and micro-conductive line. High temperature inkjet printing and low temperature inkjet printing were applied in this study for the quality of micro-joint and micro-conductive line during different inkjet factors.

Micro droplets of molten lead-free solder were ejected at 230oC using a piezoelectric inkjet printing process. The effect of the micro droplet formation of molten lead-free solder was investigated on the pulse time of the waveform. In this study, a computer-aided analytical system for simulating the shape evolution of micro droplet of molten lead-free solder in the inkjet printing process was developed based on computational fluid dynamics techniques. The simulation results were validated with experimental observations. The numerical results were used to understand the mechanisms of the extrusion of the liquid column, the contraction of the liquid thread, and the pinch-off of the liquid thread at the nozzle exit. A commercial software Flow-3D was adopted to simulate the fluid dynamics and thermal transients of molten solders after deposited on the substrate in order to predict the morphology and line width of micro-conductive line during different step sizes or deposition frequencies .

Two silver containing solutions were employed in this study for the fabrication of conductive patterns using inkjet printing. Line patterns with various droplet interspaces sizes of 10, 20, 30, and 40 μm were printed and evaluated. Moreover, the morphologies of line patterns were also investigated under different substrate temperatures of 25, 50, and 90℃ in this study. Aqueous silver nitrate inks of 1, 5, and 10 molarity (M) were employed in a piezoelectric inkjet printing apparatus. The actual printing qualities of array and line patterns are then analyzed by variation of dot interval and substrate temperature. Unsteady spreading features of printed array and line patterns on hydrophilic glass are found to be due to silver nitrate crystal during droplet drying, which is dominated by solute concentration and substrate temperature. The characteristics of drying progress for silver nitrate solutions were investigated after measuring contact angle on the prepared glass substrates. Due to the crystallization of silver nitrate, the decrease of local surface tension was induced with decreasing solute concentration.

目錄
中文摘要 I
ABSTRACT II
致謝 III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 前言 1
1-1研究背景 1
1-2 文獻回顧 2
1-2-1 噴墨技術 2
1-2-2 墨水材料 3
1-2-2-1 常溫噴墨材料 3
1-2-2-2 高溫噴墨材料 4
1-2-3 噴墨技術相關研究 5
1-3 研究目的 6
第二章 理論基礎 12
2-1 控制方程式 12
2-2 自由表面的處理 14
2-3 表面張力的處理 15
2-3-1 表面張力 15
2-3-2 表面張力的計算 15
2-3-3 CSF模式 16
2-4熱量傳遞處理 18
2-5 邊界條件 19
2-5-1 自由表面邊界 19
2-5-2 固體邊牆邊界 20
2-5-3 噴墨頭邊界 20
第三章 數值方法 24
3-1 系統的分割與變數設置 24
3-2 控制方程式的差分化 25
3-2-1動量方程式的差分化 25
3-2-2 連續方程式的差分化 26
3-2-3 速度場與壓力場的解法 27
3-3 自由表面追蹤的數值處理 29
3-3-1 自由表面之建立與重建 29
3-3-2 自由表面之傳遞 33
3-3-3 流體體積的重新分佈 33
3-4 表面張力的數值處理 35
3-5 邊界條件的設定 38
3-5-1 自由表面之邊界條件 38
3-5-2 固體邊牆之邊界條件 39
3-6 穩定度的要求 39
3-7 解析步驟與流程 41
第四章 實驗方法 51
4-1 實驗設備 51
4-2 墨水製備 52
4-3 實驗條件的設定 53
4-4 液柱長度、液滴飛行距離、液滴體積及飛行速度的決定 54
4-5 基板的準備與後續處理 54
第五章 結果與討論 59
5-1銲錫合金微液滴型態的分析 59
5-1-1 銲錫合金微液滴的成形過程 59
5-1-2 不同型態微液滴的模擬結果 60
5-1-3不同型態微液滴的實驗結果 62
5-1-4 銲錫合金微液滴型態模擬與實驗的比較 64
5-2 銲錫合金微液滴撞擊基板過程分析 64
5-2-1單一顆微液滴噴覆於基板後之流動及熱傳情形 65
5-2-2 多顆微液滴噴覆於基板後之流動及熱傳情形 68
5-2-3液滴間距對導線型態之影響 69
5-2-4噴覆頻率對導線圖案之影響 70
5-3 奈米銀懸浮溶液與硝酸銀溶液微液滴的比較 71
5-3-1微液滴觀察 72
5-3-2 噴印間距對製備導線的影響 73
5-3-3 基板溫度對製備導線的影響 74
5-3-4 導線電性比較 75
5-4 硝酸銀水溶液製備精微結構 76
5-4-1 硝酸銀微液滴觀測 76
5-4-2硝酸銀點陣列分析 78
5-4-3 硝酸銀導線分析 80
5-4-4硝酸銀乾燥行為分析 82
5-4-5 理想噴墨條件 86
第六章 結論 127
參考文獻 130
附錄A 動量方程式之詳細差分式 136
附錄B 壓力與速度修正之推導 142
附錄C 前向問題及逆向問題 147
附錄D 界面法向量之差分式 150
附錄E 曲率之差分式 152
附錄F 自由表面之應力平衡條件 155



1.J.U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira and J. A. Rogers, “High-Resolution Electrohydrodynamic Jet Printing, Nature Materials, No. 6, 2007, pp. 782-789
2.R. Parashkov, E. Becker, T. Riedl, H. H. Johannes and W. Kowalsky, “Large Area Electronics Using Printing Methods, Process of the IEEE, No. 93, 2005, pp. 1321-1329
3.J. Heinzl, C. H. Hertz, “Ink-Jet Printing “, Advance in Electronics and Electron Physics, Vol. 65, 1985, pp. 91-171
4.L. P. Hue, “Progress and Trends in Ink-Jet Printing Technology, Journal of Imaging Science and Technology, Vol. 42, No. 1, 1998, pp. 49-62
5.殷孟雲, “噴墨印表機設計原理 , 全華科技圖書股份有限公司, 2001.
6.E. R. Lee, “Microdrop Generation, New York: CRC, 2003, pp. 59-67
7.M. D. Croucher, M. L. Hair, “Design Criteria and Future Directions in Inkjet Ink Technology, Industrial &Engineering Chemistry Research, No. 28, 1989, pp. 1712-1718
8.F. Xue, Z. Liu, Y. Su, K. Varahramyan, “Inkjet Printed Silver Source/drainelectrodes for Low-cost Polymer Thin Film Transistors, Microelectronic Engineering, No. 83, 2006, pp. 298-302
9.Z. Liu, Y. Su, K. Varahramyan,, “Inkjet-printed Silver Conductors Using Silver Nitrate Ink and Their Electrical Contacts with Conducting Polymers, Thin Solid Films, No. 478, 2005, pp.275-279
10.C. M. Hong, S. Wagner, “Inkjet Printed Copper Source/drain Metallization for Amorphous Silicon Thin-film Transistors, IEEE Electron Device Letters, No.21, 2000, pp. 384-386
11.S. K. Kang, P. Lauro, D. Y. Shih, “Microstructure and Mechanical Properties of Lead-Free Solders and Solder Joints Used in Microelectronic Applications, IBM Journal of Research and Development, No. 49, 2005, pp. 607-620
12.J. S. Hwang, “Implementing Lead-Free Electronics, New York: McGraw-Hill, 2004, pp. 69
13.L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid under Capillary Force, Philosophical Magazine, Vol. 34, 1892, pp. 145
14.W. T. Pimbley, H. C. Lee, “Satellite Droplet Formation in a Liquid Jet, IBM Journal of research and Development, Vol. 20, 1976, pp. 258-270
15.D. B. Bogy, S. J. Shine, F. E. Talke, “Finite Difference Solution of the Cosserat Fluid Jet Equations, Journal of Computational Physics, Vol. 38, 1980, pp. 294-326
16.D. B. Bogy, F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Inkjet Devices, IBM Journal of research and Development, Vol.28, NO.3, 1984, pp. 314-321
17. D. Attinger, Z. Zhao, D. Poulikakos, An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics, Journal of Heat Transfer, Vol. 122, 2000, pp. 544-556
18.S. Haferl, D. Poulikakos, “Experimental Investigation of the Transient Impact Fluid Dynamics and Solidification of a Molten Microdroplet Pile-up, International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 535-550
19.M. Fang, S. Chandra, C. B. Park, “Experiments on Remelting and Solidification of Molten Metal Droplets Deposited in Vertical Columns, Journal of Manufacturing Science and Engineering, Vol. 129, 2007, pp. 311-318
20. J. E. Fromm, “Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets, IBM Journal of research and Development, Vol. 28, 1984, pp. 323-333
21.N. Hatta, J. Fujimoto, H. Takuda, “Deformation Process of a Water Droplet Impinging in a Solid Surface, Transactions of the ASEM Journal of Fluids Engineering, Vol. 117, 1995, pp. 394-401
22.T. M. Liou, K. C. Shih, S. W. Chau, S. C. Chen, “Three Dimensional Simulations of the Droplet Formation during the Inkjet Printing Process, International Communications in Heat and Mass Transfer, Vol. 29, No. 8, 2002, pp. 1109-1118
23.H. C. Wu, H. J. Lin, Y.C. Kuo, W. S. Hwang, “Simulation of Droplet Ejection for a Piezoelectric Inkjet Printing Device, Materials Transaction, Vol.45, No. 3, 2004, pp. 893-899
24.H. Wijshoff, “The Dynamics of the Piezo Inkjet Printhead Operation, Physics Reports, Vol. 491, 2010, pp. 77-177
25.C. W. Hirt, B. D. Nichols, R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries, Technology Report LA-8355, Los Alamos Scientific Laboratory, 1980.
26.C. W. Hirt, B. D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, No. 39, 1981, pp. 201-225.
27.A. Celic, G. G. Zilliac, “Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer, NASA Ames Research Center, USA, August 1997.
28.D. L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion, in Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines, Academic Press, 1982, pp. 273-285.
29.D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-dimensional Flows, Journal of Computational Physics, Vol. 152, 1999, pp. 423-456.
30.R. Scardovelli, S. Zaleski, “Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids, Journal of Computational Physics, Vol. 164, 2000, pp. 228-237.
31.W. J. Rider, D. B. Kothe, “Reconstructing Volume Tracking, Journal of Computational Physics, Vol. 141, 1998, pp. 112-152.
32.J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum Method for Modeling Surface Tension, Journal of Computational Physics, Vol. 100, 1992, pp. 335-354.
33.D. B. Kothe, R. C. Mjolsness, M. D. Torrey, “RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces, LA-12007-MS, April 1994.
34.C. W. Hirt, J. P. Shannon, Free-Surface Stress Conditions for Incompressible-Flow Calculations, Journal of Computational Physics, Vol. 2, 1968, pp. 403-411.
35.S. Chen, D. B. Johnson, P. E. Raad, “Velocity Boundary Conditions for the Simulation of Free Surface Fluid Flow, Journal of Computational Physics, Vol. 116, 1995, pp. 262-276.
36.吳鉉忠, “壓電式微液滴噴射數學模擬系統之開發與實驗研究, 國立成功大學材料科學及工程學系博士論文, 2004.
37.C. W. Hirt, B. D. Nichols, N. C. Romero, “SOLA—A Numerical Transient Solution Algorithm for Fluid Flows, Technical Report LA-5852, Los Alamos Scientific Laboratory, 1975.
38.T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola, J. K. Kivilahti, “Evolution of Microstructure and Failure Mechanism of Lead-Free Solder Interconnections in Power Cycling and Thermal Shock Tests, Microelectronics Reliability, No. 47, 2007, pp. 1135-1144
39.J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-cost Electronic Assembly: A Review, Journal of Electronic Materials, NO. 23, 1994, PP. 693-700.
40.V. H. Stott, “The Measurement of the Viscosity of A Molten Metal By Means of An Oscillating Disc, Proceedings of the Physical Society, No. 45, 1933, pp. 530-544.
41.D. W. Tian, C. Q. Wang, Y. H. Tian, “Effect of Solidificaation on Solder Bump Formation in Solder Jet Process: Simulation and Experiment, Transactions of Nonferrous Metals Society of China, No. 18, 2008, pp. 1201-1208.
42.蔡銘修, “壓電噴墨技術之微液滴行為及噴印品質研究, 國立成功大學材料科學及工程學系博士論文, 2010.
43.P. C. Duineveld, “The Stability of Ink-jet Printed Lines of Liquid with Zero Receding Contact Angle on a Homogeneous Substrate, Journal of Fluid Mechanics, Vol. 477, 2003, pp. 175-200
44.P. J. Smith, D. Y. Shin, J. E. Stringer, B. Derby, N. Reis, “Direct Ink-jet Printing and Low Temperature Conversion of Conductive Silver Patterns, The Journal of Materials Science, Vol. 41, 2006, pp. 4153
45.S. H. Lee, K. Y. Shin, J. Y. Hwang, K. T. Kang, H. S. Kang, “Silver Inkjet Printing with Control of Surface Energy and Substrate Temperature, Journal of Micromechanics and Microengineering, No. 7, Vol. 18, 2008, pp. 075014
46. R. D. Deegan, “Pattern formation in drying drops, Physical Review E, Vol. 61, 2000, pp. 475-485.
47.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, “Contact line deposits in an evaporating drop, Physical Review E, Vol. 62, 2000, pp. 756-765.
48.N. Shahidzadeh-Bonn, D. Bonn, G. Wegdam “Salt Crystallization during Evaporation: Impact of Interfacial Properties, Vol. 24, 2008, pp. 8599–8605

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top