跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃靖崴
研究生(外文):Jing-WeiHuang
論文名稱:多晶矽鑄造殘留應力之數值模擬及其實驗驗證
論文名稱(外文):The Numerical Simulation of Residual Stresses of Multi-Crystalline Silicon Casting and its Experimental Verification
指導教授:黃文星黃文星引用關係
指導教授(外文):Weng-Sing Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:多晶矽鑄造殘留應力熱交換式長晶爐數值模擬
外文關鍵詞:multi-crystallineingot castingunidirectional growthhem furnacethermal stresses numerical simulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
太陽能產業中,在多晶矽鑄造製程中應力造成多晶矽試片的缺陷會使得太陽能電池發電效率大幅降低。本研究使用商用套裝軟體模擬單方向性成長多晶矽長晶爐製程中爐體內部應力場,除了加以驗證應力場並分析熱閘門開啟大小以及時間、長晶爐內溫度場分布對於應力場變化影響。爾後根據分析結果利用於新製程參數設計,成功模擬展示出新製程爐體加熱器功率變化、內部溫度曲線趨勢、晶粒成長大小及熱應力分布。
本研究首先建立一熱交換式(Heat Exchange Method, HEM)多晶矽長晶爐之溫度場數值模擬系統,以爐體內部溫度曲線、熱應力數據利用拉曼光譜應力檢測等資訊進行驗證。模擬結果得知單段式熱閘門改善製程由於熱閘門開啟時間減少爐體內溫度增高而讓熱應力有效的減少,應力較原始製程改善5 %;將爐體更改為三段式熱閘門使溫度更有效控制下,應力較單段式熱閘門原始製程改善8 %;三段式熱閘門後期熱閘門全開下無法有效控制爐內溫度,於此設計出不開啟第三段熱閘門下長晶製程,經對照熱應力較三段式熱閘門原始製程改善12.6 %。

The quality of multi-crystalline silicon ingot from casting process by heat exchange method (HEM) is significantly affected by the cooling condition and the design of the hot-zone. In the casting processes, the shape of the liquid-solid interface has a great impact on the quality of the obtained silicon ingot. A non-uniform shape of the liquid-solid interface induces increases in the temperature gradient and thermal stresses, thereby increasing the number of dislocations. In this study, a numerical model of a silicon ingot is developed to carry out residual thermal stress simulations. The result obtained under various control conditions are discussed.
Thermal stress results from differences in the cooling speed between different ingot parts, and causes different degrees of expansion in the ingot. In HEM system, the thermal stress is affected by temperature variation/distribution of the heat gates and power curves of the heaters and cooling system in the furnace. The different processes and the design of the furnaces are discussed with the results of thermal stress simulation to verify the accuracy of the numerical system. Due to the result, Single heat gate optimal process could effectively reduce 5 % of the stresses. With the triple heat gate process, the stresses could effectively reduce 8%. The triple heat gate optimal process could reduce 12.6 % of the stresses.

中文摘要 I
Abstract II
誌謝 III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 鑄造模擬解析 3
1.2.2 微組織模擬 5
1.2.3 熱應力模擬 7
1.2.4 應力檢測 10
1.2.5 太陽能多晶矽鑄造模擬 13
1.3 研究目的 15
第二章 數值方法及理論基礎 19
2.1 電腦模擬鑄造系統之數學模型 19
2.2 微組織模擬之數學模式 22
2.3 熱應力數值模擬之數學模式 25
2.3.1 熱應力數值模擬基本假設 25
2.3.2 彈塑性力學中基本變量 26
2.3.3 熱彈塑性控制方程式 27
2.4 熱應力檢測 35
2.4.1 拉曼散射介紹 35
2.4.2 拉曼光譜應用 37
第三章 實驗方法 45
3.1 實際多晶矽鑄錠長晶製程 45
3.1.1 溫度曲線量測 45
3.2 數值模擬 46
3.2.1 溫度場及凝固模擬解析 46
3.2.2 微組織數值模擬 48
3.2.3 熱應力模型建立以及條件假設 48
3.3 拉曼光譜殘留應力檢測 50
第四章 結果與討論 71
4.1. 單一熱閘門原始製程以及改善製程應力結果與分析 71
4.1.1 矽晶錠橫切面應力模擬結果 71
4.1.2 矽晶錠橫切面應力拉曼量測結果 73
4.1.3 矽晶錠縱切面應力 73
4.2. 三段式熱閘門製程應力分析結果與分析 76
4.2.1 矽晶錠橫切面應力模擬結果 76
4.2.2 矽晶錠橫切面應力拉曼量測結果 77
4.2.3 矽晶錠縱切面應力模擬結果 78
4.3. 熱應力新製程構思與模擬 80
4.3.1 熱應力影響要點統整以及新製程構思 80
4.3.2 改善製程功率、溫度比較 82
4.3.3 改善製程長晶速度比較 83
4.3.4 微組織模擬結果 84
4.3.5 改善製程橫切面熱應力比較 85
4.3.6 改善製程縱切面應力值比較 86
第五章 結論 111
參考文獻 113

[1]W. Kurz and D.J. Fisher, Fundamental of Solidification, 4th ed, Trans Tech Publications Ltd, 1998,pp. 11-12.
[2]W.S. Hwang, Computer Simulation for the Fluid Flow in Casting System, M. S. Thesis, Department of Metallurgical and Materials Engineering, University of Pittsburgh, 1981.
[3]R.A. Stoehr and W.S. Hwang, Modeling the Flow of Molten Metal Having a Free Surface During Entry into Molds, Proceeding of the Conference on Modeling of Casting and Welding Processes II, 1983, pp. 47-58.
[4]W.S. Hwang and R.A. Stoehr, Fluid Flow Modeling for Computer Aided Design of Casting, Journal of Metals, 1983, pp. 22-29.
[5]W.S. Hwang and R.A. Stoehr, Modeling of Fluid Flow, ASM Metals Handbook 15, 1988, pp. 867-876.
[6]C.W. Hirt, Flow Analysis for Non-expects, Proceeding of the Conference on Modeling of Casting and Welding Processes II, 1983, pp. 67-75.
[7]K. Anzai and E. Niyama, Quasi Three-Dimensional Mold Filling Simulation System for Prediction of Defects in Die Castings, Conference Proceeding on the Modeling of Casting, Welding and Advanced Solidification Processes IV, 1988, pp. 471-485.
[8]B. Minaie, K.A. Stelson, V.R. Voller, Analysis of flow patterns and solidification phenomena in the die-casting process, Journal of Engineering Materials and Technology-Transactions of the Asme, V. 113, No. 3, Jul. 1991, pp. 296-302.
[9]K.O. Yu, Modeling for Casting and Solidification Process, Marcel Dekker Inc, V. 5. 2002, pp. 123-187.
[10]S.G.R. Brown, J.A. Spittle, Computer-simulation of grain-growth and macrostructure development during solidification, Materials Science and Technology, V. 5, No. 4, Apr. 1989, pp. 362-368.
[11]C.A. Gandin, RappazM, A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metallurgica Et Materialia, V. 42, No. 7, Jul. 1994, pp. 2233-2246.
[12]C.A. Gandin, J.L. Desbiolles, M. Rappaz, P. Thevoz, A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, V. 30, No. 12, Dec. 1999, pp. 3153-3165.
[13]H. Liang, W. Gang, R. Yi-ming, “Modeling on Directional Solidification of Solar Cell Grade Multicrystalline Silicon Ingot Casting, Journal of Shanghal Jiaotong University (Science), V.16, No. 3, pp.316-319.
[14]陳昀鈿, “LCD矽膜重熔與凝固的電腦模擬, 國立台灣科技大學機械工程系碩士論文, 2007.
[15]蘇彥安, “電腦輔助模擬矽膜重熔與凝固長晶之研究, 國立台灣科技大學機械工程系碩士論文, 2009.
[16]C. Häβler, G. Stollwerck, W. Koch, W. Krumbe, A. Müller, D. Franke and T. Rettelbach, “Multicrystalline Silicon for Solar Cells-Process Development by Numerical Simulation, Adv. Mater, V. 13, No. 23, 2001.
[17]X.J. Chen, S. Nakano, K. Kakimoto “3D numerical analysis of the influence of material property of a crucible on stress and dislocation in multicrystalline silicon for solar cells, Journal of Crystal Growth, V. 318, 2011, pp. 259-264.
[18]S. Nakano, X.J. Chen, B. Gao, K. Kakimoto, “Numerical analysis of cooling rate dependence on dislocation density in multicrystalline silicon for solar cells, Journal of Crystal Growth, V. 318, 2011, pp. 280-282.
[19]H. Behnken, “Simulation of the Development of Dislocation Density in Multi-Crystalline Silicon During Crystallisation Processes, 24th European Photovoltaic Solar Energy Conference, 2009, pp. 1281-1284.
[20]K. Sumino, “Dislocations and mechanical properties of silicon, Materials Science and Engineering: B, V. 4, 1989, pp. 335-341.
[21]C. Häßler, E.-U. Reisner, “Low Dislocation Density Multicrystal line Silicon for Photovoltaic Applications, Solid State Phenomena, V. 67-68, 1999, pp. 447-452.
[22]K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi, “Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing, Applied Physics Letters, V. 93, 2008, pp. 122108.
[23]D. Franke, T. Rettelbach, C. Häßler, W. Koch, A. Müller, “Silicon ingot casting process development by numerical simulations Solar Energy Materials & Solar Cells, V. 72, 2002, pp. 83-92.
[24]X.J. Chen, S. Nakano, K. Kakimoto, Study on thermal stress in a silicon ingot during a unidirectional solidification process, Journal of Crystal Growth, V. 310, 2008, pp. 4330-4335.
[25]S. Lei, L. Lijun, L. Zaoyang, Z. Wenhan, “Numerical simulation of thermal stress distribution in a solidified silicon ingot for solar cells Materials for Renewable Energy & Environment, V. 1, 2011, pp. 95-99.
[26]M. M’Hamdi, S. Gouttebroze, H.G. Fjær, “Thermo-mechanical analysis of the ingot–crucible contact during multi-crystalline silicon ingot casting, Journal of Crystal Growth, V. 318, 2011, pp. 269-274.
[27]P. J. Withers, H. K. D. H. Bhadeshia, “Residual stress. Part 1 – Measurement techniques., Materials Science and Technology, V. 17, 2001, pp. 355.
[28]G. Sarau, A. Bochmann, S. Christiansen, “Stresses and their relation to defects in multicrystalline solar silicon Photovoltaic Specialists Conference, 2010, pp. 699-703.
[29]B. Pivac, K. Furić, D. Desnica “Raman line profile in polycrystalline silicon. Journal of Applied Physics, V. 86, No. 8, pp. 4383-4386.
[30]Y. Gogotsi, C. Baek, F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon, Semiconductor Science and Technology, V. 14, 1999, pp. 936-944.
[31]P. Gundel, M. C. Schubert, F. D. Heinz, W. Kwapil, “Impact of stress on the recombination at metal precipitates in silicon, Journal of Applied Physics, V. 108, 2010, pp. 103707.
[32]M. Holla, T. Arguirov, W. Seifert, M. Kittler, “Analysis of silicon carbide and silicon nitride precipitates in block cast multicrystalline silicon, Solid State Phenomena, V. 156-158, 2010, pp. 41-48.
[33]A. Schӧnecker, L. J. Geerligs, A. Müller, “Casting Technologies for Solar Silicon Wafers Block Casting and Ribbon-Growth-on-Substrate, Solid State Phenomena, V. 95-96, 2004, pp. 149-158.
[34]H.J. Mӧller, C. Funke, M. Rinio, S. Scholz, “Multicrystallin e silicon for solar cells, Thin Solid Films, V. 487, 2005, pp. 179 -187.
[35]A. Müller, M. Ghosh, R. Sonnenschein, P. Woditsch, “Silicon for photovoltaic applications, Materials Science and Engineering B, V. 134, 2006, pp. 257-262.
[36]D. Franke, T. Rettelbach, C. Haszler, W. Koch, A. Muller, Silicon ingot casting: process development by numerical simulations, Solar Energy Materials and Solar Cells, V. 72. 2002, pp. 83-92.
[37]I. Steinbach, M. Apel, T. Rettelbach, D. Franke, “Numerical simulations for silicon crystallizationprocessesFexamples from ingot and ribbon casting, Solar Energy Materials & Solar Cells, V. 72, 2002, pp. 59-68.
[38]F. Barvinschi,, C. Stelian, Y. Delannoy, N. Mangelinck, T. Duffar, “Modeling the Multi-crystalline Silicon Ingot Solidification Process in a Vertical Square Furnace, Journal of Optoelectronics and Advanced Materials, V. 5, pp. 293 – 300.
[39]K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, “Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting, Acta Materialia, V. 54, 2006, pp. 3191-3197.
[40]L. Liu, S. Nakano, K. Kakimoto, Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model, Journal of Crystal Growth, V. 292, No. 2, 2006, pp. 515-518.
[41]L. Liu, S. Nakano, K. Kakimoto, Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells, Journal of Crystal Growth, V. 310, No. 7-9, 2008, pp. 2192-2197.
[42]A. Kuliev, N. Durnev, V. Kalaev, Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells, Journal of Crystal Growth, V. 303, No. 1. 2007, pp. 236-240.
[43]D. Vizman, J. Friedrich, G. Mueller, 3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process, Journal of Crystal Growth, V. 303, No. 1, 2007, pp. 231-235.
[44]Y. Delannoy, F. Barvinschi, T. Duffar, “3D dynamic mesh numerical model for multi-crystalline silicon furnaces, Journal of Crystal Growth, V. 303, 2007, pp.170 -174.
[45]B. Wu, N. Stoddard, R. Ma, R. Clark, Bulk multicrystalline silicon growth for photovoltaic (PV) application, Journal of Crystal Growth, V. 310, No. 7-9, 2008, pp. 2178-2184.
[46]B. Devulapallia, M. S. Kulkarni, “Modeling Multi-Crystalline Silicon Growth in Directional Solidification Systems, ECS Transactions, V. 18, 2009, pp. 1023-1029.
[47]J. Wei, H. Zhang, L. Zheng, C. Wang, B. Zhao, “Modeling and improvement of silicon ingot directional solidification for industrial production systems, Solar Energy Materials & Solar Cells, V. 93, 2009, pp. 1531-1539.
[48]K.M. Yeh, C.K. Hseih, W.C. Hsu, C.W. Lan, High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification, Progress in Photovoltaics: Research and Applications, V. 18, 2010, pp.265-271.
[49]K. Kakimoto, H. Matsuo, S. Hisamatsu, B. Ganesh, G. Bing, X.J. Chen, et al., Numerical Analysis of mc-Si Crystal Growth, Solid State Phenomena, V. 156-158, 2009, pp. 193-198.
[50]S.H. Sun, Y. Tan, H.X. Zhang, W. Dong, J.S. Zhang, G.X. Hu, Effect of Pulling Rate on Multicrystalline Silicon Ingot during Directional Solidification, Materials Science Forum, V. 675-677, 2011, pp. 53-56.
[51]劉仁堯, 多晶矽鑄造凝固過程行為及微結構之數值模擬及其實驗驗證 , 國立成功大學材料科學暨工程學研究所博士論文, 2011.
[52]D.Waite and M. Samond, Finite Element Simulation of Solidification in Investment Casting, 39thAnnual Technical Meeting: Investment Casting Institute, 1991, pp 17:1-25.
[53]何堃森, 引擎渦輪段精密翼形件之鑄造與鍍層技術及製程/微組織模擬研究, 國立成功大學材料科學暨工程學研究所博士論文, 2004.
[54]M. Oswald, M. Turek, J. Bagdahn, “Numerical simulations of thermo-mechanical stresses during the casting of multi-crystalline silicon ingots, Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2010, pp. 1-5.
[55]I. Takahashi, N. Usami, K. Kutsukake, G. Stokkan, K. Morishita, K. Nakajima, “Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed, Journal of Crystal Growth, V. 312, 2010, pp. 897-901.
[56]葉俊平, “FC250灰鑄鐵煞車碟盤之整合性數值模擬研究, 國立成功大學材料科學暨工程學研究所博士論文, 2009.
[57]趙振良, “運用顯微拉曼光譜技術分析單晶矽奈米結構之應力分佈, 國立清華大學電子工程研究所碩士論文, 2010.
[58]T. Y. Yang, C. J. Chen, L. C. Wei, C. C. Yung, “The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process, Journal of Crystal Growth, V. 312(8), 2010, pp. 1282-1290.
[59]N. Miyazaki, Y. Kuroda, M. Sakaguchi, “Dislocation density analyses of GaAs bulk single crystal during growth process (effects of crystal anisotropy), Journal of Crystal Growth, V. 218, 2000, pp. 221-231.
[60]N. Ono, K. Kitamura, K. Nakajima, Y. Shimanuki, “Measurement of Young's Modulus of Silicon Single Crystal at High Temperature and Its Dependency on Boron Concentration Using the Flexural Vibration Method, Japanese Journal of Applied Physics, V. 39, pp. 368-371.
[61]N. William, Jr, Sharpe, B. Yuan, R. Vaidyanathan, “Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon, Micro Electro Mechanical Systems, 1997, pp. 424-429.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊