跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂黛亞
研究生(外文):DhyahAnnur
論文名稱:利用電漿合成銀奈米粒子於電紡幾丁聚醣奈米纖維
論文名稱(外文):Plasma- synthesized Silver Nanoparticles Embedded in the Electrospun Chitosan Nanofibers
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:66
外文關鍵詞:Chitosanelectrospinninglow pressure plasmasilver nanoparticlesantibacterial properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Chitosan, known as sustainable materials with high metal binding activity and potential antibacterial properties is a promising natural polymer for high performance filtration. In case of “environmental concern”, creating an antibacterial material with a “green technology” and is an urgent. Through this research, low pressure plasma is used to synthesize silver nanopaticles in electrospinning chitosan nanofibers. Low pressure plasma offers way to reduce the usage of toxic chemical, time efficiency, and lower temperature processing in compare to other method such as chemical reduction, thermal, and UV- irradiation. This incorporation is expected to increase antibacterial properties of chitosan nanofibers.
Chitosan nanofibers had been successfully electrospun on pvc grid from 5.4% w/v of chitosan and 0.6% PEO. Fibers diameter was 136 nm ± 18% without bead structures. AgNO3 addition up to 2% did not significantly change chitosan nanofibers diameter.
Plasma treatment reduced Ag+ from AgNO3 precursor into Ag0 so that Ag nanoparticles were created. Besides, plasma also etched chitosan nanofibers so that reduction of fibers diameter is observed. UV- visible spectroscopy and XPS analysis revealed silver intensity will be increasing proportionally with plasma treatment time. XPS analysis also observed interaction between chitosan and Ag nanoparticles (N--Ag). Furthermore, TEM evaluation showed particle size average after 1.5 minutes plasma treatment was 1.5 nm in average. By addition of Ag nanoparticles, antibacterial activity of chitosan nanofibers could be enhanced.

ABSTRACT I
ACKNOWLEDGEMENT II
TABLE OF CONTENTS III
LIST OF TABLES VI
LIST OF ILLUSTRATIONS VII
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Literature Survey 3
1.2.1 Chitosan & Electrospinning Chitosan Nanofibers 3
1.2.2 Ag Nanoparticle- Polymeric Nanofibers 7
1.2.3 Plasma for Polymer Surface Modification 9
1.2.4 Crosslinking Process on Chitosan 10
1.3 Motive & Objective 11
CHAPTER 2 FUNDAMENTAL THEORY 12
2.1 Nanofibers and Electrospinning 12
2.1.1 Effect of Solution Properties 14
2.1.2 Effect of Processing Parameters 15
2.2 Plasma 15
2.2.1 Nonthermal Plasma for Surface Modification of Polymers 16
2.2.2 Nonthermal Plasma Sources 18
2.3 Ag Nanocomposites 21
2.3.1 Preparation Techniques of Ag Nanocomposites 22
2.3.2 Ag nanoparticles as Antimicrobial agent. 23
CHAPTER 3 EXPERIMENTAL DESIGN 25
3.1 General preview 25
3.2 Materials 26
3.3 Nanofiber Fabrication 26
3.3.1 Optimizing Chitosan nanofibers 26
3.3.2 Fabrication of Chitosan- Ag Nanofibers 28
3.4 Plasma Treatment for Synthesizing Ag Nanoparticles 29
3.5 Crosslinking Chitosan Nanofibers 30
3.6 Nanofibers Characterization 30
3.6.1 Scanning Electron Microscopy (SEM) 30
3.6.2 Transmission Electron Microscope (TEM) 31
3.6.3 UV- Visible Spectrophotometer 31
3.6.4 Fourier Transform Infrared Spectroscopy (FT-IR) Analysis 32
3.6.5 X-ray Photoelectron Spectroscopy (XPS) 33
3.6.6 Disk Diffusion Method 34
CHAPTER 4 RESULTS AND DISCUSSION 35
4.1 Nanofiber Fabrication 35
4.1.1 Optimizing Solution Properties and Electrospinning Process 35
4.1.2 AgNO3 Addition to Chitosan Nanofibers 38
4.2 Plasma Treatment to Synthesize Ag Nanoparticles in Electrospun Chitosan Nanofibers 41
4.2.1 Ag Characteristic Spectra by UV- visible Spectroscopy 41
4.2.2 Morphology of Plasma- treated Chitosan Nanofibers 44
4.2.3 FTIR Analysis 47
4.2.4 XPS Analysis 49
4.2.5 TEM Analysis 55
4.3 Crosslinking Process 56
4.3.1 Antibacterial Test on As Spun Nanofibers 58
4.3.2 Antibacterial Test on Plasma- treated Chitosan- Ag nanofibers 59
CHAPTER 5 CONCLUSION 61
Reference 62
1.I. S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology. 167(2–3): p. 283-293, 2005.
2.S. Ramakrishna, R. Jose, P. Archana, A. Nair, R. Balamurugan, J. Venugopal, and W. Teo, Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. Journal of Materials Science. 45(23): p. 6283-6312, 2010.
3.R. S. Barhate and S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials. Journal of Membrane Science. 296(1–2): p. 1-8, 2007.
4.V. Thavasi, G. Singh, and S. Ramakrishna, Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science. 1(2): p. 205-221, 2008.
5.M. Rinaudo, Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31(7): p. 603-632, 2006.
6.K. Desai, K. Kit, J. Li, P. Michael Davidson, S. Zivanovic, and H. Meyer, Nanofibrous chitosan non-wovens for filtration applications. Polymer. 50(15): p. 3661-3669, 2009.
7.X. Geng, O.-H. Kwon, and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 26(27): p. 5427-5432, 2005.
8.J. D. Schiffman and C. L. Schauer, A Review: Electrospinning of Biopolymer Nanofibers and their Applications. Polymer Reviews. 48(2): p. 317-352, 2008.
9.S. Agarwal, A. Greiner, and J. H. Wendorff, Electrospinning of Manmade and Biopolymer Nanofibers—Progress in Techniques, Materials, and Applications. Advanced Functional Materials. 19(18): p. 2863-2879, 2009.
10.C. Kriegel, A. Arrechi, K. Kit, D. J. McClements, and J. Weiss, Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Critical Reviews in Food Science and Nutrition. 48(8): p. 775-797, 2008.
11.C. Feng, K. C. Khulbe, and T. Matsuura, Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. Journal of Applied Polymer Science. 115(2): p. 756-776, 2010.
12.W. E. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology. 17(14): p. R89-R106, 2006.
13.S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers: World Scientific Publishing Company. 2005.
14.G. Dong, X. Xiao, X. Liu, B. Qian, Z. Ma, S. Ye, D. Chen, and J. Qiu, Preparation and characterization of Ag nanoparticle-embedded polymer electrospun nanofibers. Journal of Nanoparticle Research. 12(4): p. 1319-1329, 2010.
15.W.-J. Jin, H. K. Lee, E. H. Jeong, W. H. Park, and J. H. Youk, Preparation of Polymer Nanofibers Containing Silver Nanoparticles by Using Poly(N-vinylpyrrolidone). Macromolecular Rapid Communications. 26(24): p. 1903-1907, 2005.
16.A. T. Hang, B. Tae, and J. S. Park, Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: Fabrication and characterization. Carbohydrate Polymers. 82(2): p. 472-479, 2010.
17.E. Kim, S. Kim, and C. Lee, Electrospinning of polylactide fibers containing silver nanoparticles. Macromolecular Research. 18(3): p. 215-221, 2010.
18.M. Rai, A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 27(1): p. 76-83.
19.N. L. Lala, R. Ramaseshan, L. Bojun, S. Sundarrajan, R. S. Barhate, L. Ying-jun, and S. Ramakrishna, Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnology and Bioengineering. 97(6): p. 1357-1365, 2007.
20.K. Shameli, M. B. Ahmad, W. M. Yunus, A. Rustaiyan, N. A. Ibrahim, M. Zargar, and Y. Abdollahi, Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomedicine. 5: p. 875-87, 2010.
21.K. Shameli, M. Bin Ahmad, M. Zargar, W. M. Yunus, N. A. Ibrahim, P. Shabanzadeh, and M. G. Moghaddam, Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int J Nanomedicine. 6: p. 271-84, 2011.
22.H. Kong and J. Jang, Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir. 24(5): p. 2051-2056, 2008.
23.R. Yoksan and S. Chirachanchai, Silver nanoparticles dispersing in chitosan solution: Preparation by gamma-ray irradiation and their antimicrobial activities. Materials Chemistry and Physics. 115(1): p. 296-302, 2009.
24.Q. Shi, N. Vitchuli, J. Nowak, J. M. Caldwell, F. Breidt, M. Bourham, X. Zhang, and M. McCord, Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal. 47(7): p. 1402-1409, 2011.
25.M. Nitschke, Plasma Modification of Polymer Surfaces and Plasma Polymerization
Polymer Surfaces and Interfaces, M. Stamm, Editor. Springer Berlin Heidelberg. p. 203-214. 2008.
26.C. K. S. Pillai, W. Paul, and C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 34(7): p. 641-678, 2009.
27.K. S. V. Krishna Rao, P. Ramasubba Reddy, Y.-I. Lee, and C. Kim, Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydrate Polymers. 87(1): p. 920-925, 2012.
28.H. Yi, L.-Q. Wu, W. E. Bentley, R. Ghodssi, G. W. Rubloff, J. N. Culver, and G. F. Payne, Biofabrication with Chitosan. Biomacromolecules. 6(6): p. 2881-2894, 2005.
29.R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances. 28(1): p. 142-150, 2009.
30.M. Pakravan, M.-C. Heuzey, and A. Ajji, A fundamental study of chitosan/PEO electrospinning. Polymer. 52(21): p. 4813-4824, 2011.
31.X.-H. Chu, X.-L. Shi, Z.-Q. Feng, Z.-Z. Gu, and Y.-T. Ding, Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnology Letters. 31(3): p. 347-352, 2009.
32.A. Travan, E. Marsich, I. Donati, and S. Paoletti, Silver Nanocomposites and Their Biomedical Applications, in Nanotechnologies for the Life Sciences. Wiley-VCH Verlag GmbH & Co. KGaA. 2007.
33.J. An, H. Zhang, J. Zhang, Y. Zhao, and X. Yuan, Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid & Polymer Science. 287(12): p. 1425-1434, 2009.
34.W. K. Son, J. H. Youk, and W. H. Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers. 65(4): p. 430-434, 2006.
35.C. M. Chan, T. M. Ko, and H. Hiraoka, Polymer surface modification by plasmas and photons. Surface Science Reports. 24(1–2): p. 1-54, 1996.
36.P. Wanichapichart, R. Sungkum, W. Taweepreda, and M. Nisoa, Characteristics of chitosan membranes modified by argon plasmas. Surface and Coatings Technology. 203(17–18): p. 2531-2535, 2009.
37.P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports. 36(5–6): p. 143-206, 2002.
38.S. S. Silva, S. M. Luna, M. E. Gomes, J. Benesch, I. Pashkuleva, J. F. Mano, and R. L. Reis, Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience. 8(6): p. 568-576, 2008.
39.S. H. Hsu, C. H. Lin, and C. S. Tseng, Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication. 4(1): p. 015002, 2012.
40.F. Pati, B. Adhikari, and S. Dhara, Development of Ultrafine Chitosan Fibers Through Modified Wetspinning Technique. Journal of Applied Polymer Science. 121(3): p. 1550-1557, 2011.
41.F. Pati, B. Adhikari, and S. Dhara, Development of chitosan-tripolyphosphate fibers through pH dependent ionotropic gelation. Carbohydr Res. 346(16): p. 2582-8, 2011.
42.Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5): p. 1197-211, 2006.
43.W. K. Son, J. H. Youk, and W. H. Park, Preparation of Ultrafine Oxidized Cellulose Mats via Electrospinning. Biomacromolecules. 5(1): p. 197-201, 2003.
44.R. Foest, M. Schmidt, and K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry. 248(3): p. 87-102, 2006.
45.J. E. Harry, Plasma, an Overview, in Introduction to Plasma Technology. Wiley-VCH Verlag GmbH & Co. KGaA. p. 1-13. 2010.
46.T. Desmet, R. Morent, N. D. Geyter, C. Leys, E. Schacht, and P. Dubruel, Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules. 10(9): p. 2351-2378, 2009.
47.A. Grill, Cold plasma in materials fabrication : from fundamentals to applications. Piscataway, N.J.: IEEE Press. 1994.
48.A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy. 57(4): p. 609-658, 2002.
49.V. K. Sharma, R. A. Yngard, and Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 145(1–2): p. 83-96, 2009.
50.C. Marambio-Jones and E. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research. 12(5): p. 1531-1551, 2010.
51.M. Potara, E. Jakab, A. Damert, O. Popescu, V. Canpean, and S. Astilean, Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology. 22(13): p. 135101, 2011.
52.M. L. Gulrajani, D. Gupta, S. Periyasamy, and S. G. Muthu, Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. Journal of Applied Polymer Science. 108(1): p. 614-623, 2008.
53.G. Martínez-Castañón, N. Niño-Martínez, F. Martínez-Gutierrez, J. Martínez-Mendoza, and F. Ruiz, Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research. 10(8): p. 1343-1348, 2008.
54.A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V. K. Sharma, T. j. Nevěčná, and R. Zbořil, Silver Colloid Nanoparticles:  Synthesis, Characterization, and Their Antibacterial Activity. The Journal of Physical Chemistry B. 110(33): p. 16248-16253, 2006.
55.J. Y. Chun, H. K. Kang, L. Jeong, Y. O. Kang, J.-E. Oh, I.-S. Yeo, S. Y. Jung, W. H. Park, and B.-M. Min, Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles. Colloids and Surfaces B: Biointerfaces. 78(2): p. 334-342, 2010.
56.W. Li, J. Wang, H. Chi, G. Wei, J. Zhang, and L. Dai, Preparation and antibacterial activity of polyvinyl alcohol/regenerated silk fibroin composite fibers containing Ag nanoparticles. Journal of Applied Polymer Science. 123(1): p. 20-25, 2012.
57.K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk, and T. J. Kang, Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. Journal of Polymer Science Part B: Polymer Physics. 44(17): p. 2468-2474, 2006.
58.I. Sondi and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 275(1): p. 177-182, 2004.
59.J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology. 16(10): p. 2346-53, 2005.
60.Y. Gao and R. Cranston, Recent advances in antimicrobial treatments of textiles. Textile Research Journal. 78(1): p. 60-72, 2008.
61.B. Stuart, Infrared spectroscopy : fundamentals and applications. Analytical techniques in the sciences. Chichester, West Sussex, England ; Hoboken, NJ: J. Wiley. xv, 224 p. 2004.
62.J. F. Watts and J. Wolstenholme, An introduction to surface analysis by XPS and AES. New York ; Chichester: J. Wiley. 2003.
63.H. J. Jeon, J. S. Kim, T. G. Kim, J. H. Kim, W.-R. Yu, and J. H. Youk, Preparation of poly(ɛ-caprolactone)-based polyurethane nanofibers containing silver nanoparticles. Applied Surface Science. 254(18): p. 5886-5890, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊