跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛仁智
研究生(外文):Jen-ChihHsueh
論文名稱:應用印章型大氣微電漿對自組裝單分子層於金面之圖樣化效應研究
論文名稱(外文):The Patterning Effect of Self-Assembled Monolayers Adsorbed on Au Using Atmospheric Micro-plasma Stamp
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:微電漿印章自組裝單分子層快速圖案轉印
外文關鍵詞:DBD-based micro-plasma stampSelf-assembled monoalyersrapid pattern transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近年來,材料工程技術已可以創造單一表面具多重特性之材料,而其單一特性區域可以達到微米/奈米尺度,因此,在這領域之中,如何在表面精準控制局部的物理和化學性質成為一個重要的議題。本研究中,利用介電質障礙放電改良之微電漿印章,在一大氣壓下轉印微米尺寸之圖樣,藉由具圖案之微電漿印章,以永久磁鐵作為內電極,透過磁力的吸引,固定並貼合欲處理之表面,再點燃電漿於圖案中。實驗使用十八碳硫醇(octadecanethiolate,ODT)於金(111)基板上製備自組裝單分子層(self-assembled monolayers,SAMs)作為超薄光阻劑,並且使用微電漿印章做不同時間的處理。結果顯示微電漿印章可以將所設計之微米圖案轉印於ODT上,無論處理時間長短,其轉印圖案之尺寸誤差都小於1 %;此外,電漿對ODT SAMs之結構造成氧化效應,亦對其排列產生擾亂,甚而使其長碳鏈骨架脫附表面,進而改變了濕式蝕刻時,ODT對蝕刻液之抗性。另外,由微電漿印章處理後之ODT/Au會於處理區域形成吸附物,但是透過清洗程序可以將吸附物除去,然而,吸附物的存在亦對蝕刻過程產生影響,有清洗過之試片其蝕刻速率較未清洗之試片快1.6倍。雖然蝕刻過程可以將ODT之圖案成功地複製到底部的金上,但是在金上的圖案有寬化的現象,比較原本設計於印章之圖案,有3 %之誤差。由本研究確認微電漿印章於SAMs表面進行圖案轉印之可行性以及利用SAMs作為超薄光阻劑之效用。
In recent years, materials with multiple surface properties in micro/nano scale are created by modern material engineering. Precisely controlling of localized physical and chemical properties in designed patterns thus becomes a significant issue. In this study, taking octadecanethiolate (ODT) self-assembled monolayers (SAMs) as an ultra-thin resist on Au (111) substrate, a dielectric barrier discharged (DBD)-based micro-plasma stamp operated at atmospheric pressure is performed to micro scale pattern transfer. In this method, the DBD-based micro-plasma stamp with designed pattern is pressed on the ODT/Au by the nature magnetic force from permanent magnet inner electrode and thereafter, plasma is ignited inside the designed pattern for various exposure times. The results demonstrated that the chemical-specific pattern has been transferred to the ODT SAMs with less than 1 % distortion of all exposure times without significant change. The exact interaction between plasma and SAMs is the partly desorption of alkyl backbone and oxidation of ODT matrix, which alter the resistance property for wet etching process. An absorbates layer forming during plasma treatment also plays an important role for pattern transferring, which can be demonstrated by the analysis after applying washing procedure to the patterned samples. The etching rate of washed sample increases 1.6 times to unwashed one. Consequently, patterns with ~3 % broadening can be successfully replicated into underlaying Au substrates. This study confirms the feasibility of utilizing DBD-based microplasma stamp to transfer patterns on SAMs surface, and the efficiency of SAMs as an ultra-thin resist.
摘要...I
Abstract...II
誌謝...III
目錄...V
表目錄...VII
圖目錄...VIII

第一章 序論...1
1.1 序論...1
1.2 研究動機...3
1.3 文獻回顧...4
1.3.1 電漿對自組裝高分子單層膜結構的氧化去除效應...4
1.3.2 電漿技術結合光罩於SAMs表面達到圖樣化轉印的效果...5
1.3.3 真空微電漿作為主動式SAMs圖樣轉印物理源...9
1.3.4 大氣微電漿印章及其微區改質效應...10
1.4 研究目的...12
第二章 理論基礎...14
2.1 電漿...14
2.1.1 電漿簡介...14
2.1.2 大氣微電漿...15
2.1.3 大氣微電漿印章[26, 27]...19
2.2 自組裝高分子單層膜(self-assembled monolayers,SAMs)...24
2.2.1 SAMs簡介...24
2.2.2 自組裝單分子層的結構描述與排列方式...27
2.3 高解析光電子能譜儀以及掃描式光電子顯微術分析...29
第三章 材料與方法...35
3.1 實驗設計與流程...35
3.1.1 實驗構想與設計...35
3.2 實驗材料與製備...38
3.2.1 微電漿印章...38
3.2.2 自組裝高分子單層膜(self-assembled monolayers)製備...40
3.2.3 水滴接觸角量測...41
3.2.4 金蝕刻實驗...42
3.3 製程儀器...43
3.3.1 電子束蒸鍍機...43
3.3.2 旋轉塗佈儀...43
3.3.3 單面光罩對準機...44
3.4 分析儀器...44
3.4.1 掃描式電子顯微鏡...44
3.4.2 原子力顯微鏡...45
第四章 結果與討論...46
4.1 大氣介電質障礙放電電漿對自組裝單分子層氧化效應之探討...46
4.1.1 大氣DBD電漿不同時間處理之水滴接觸角分析...46
4.1.2 不同大氣DBD電漿處理時間之光電子能譜儀分析...48
4.1.3 大氣DBD電漿處理後經酒精清洗試片之光電子能譜儀分析...52
4.2 大氣微電漿印章於自組裝單分子層上圖案轉印之分析...56
4.2.1 大氣微電漿印章圖案製備結果與圖案轉印效果評估...57
4.2.2 微電漿印章內電極對電漿擴散效應之影響...60
4.2.3 同步輻射光電子掃描術對圖樣化ODT/Au之分析...62
4.2.4 使用掃描式電子顯微鏡觀察微電漿印章圖案轉印尺寸之分析...68
4.3 圖樣轉印後之ODT/Au於濕式蝕刻之分析...71
第五章 結論...76
參考文獻...78


[1]A. B. Artyukhin and P. Stroeve, Effects of corrosive chemicals on solid-supported lipid bilayers as measured by surface plasmon resonance. Industrial & Engineering Chemistry Research, Vol. 42, pp. 2156-2162, 2003
[2]Q. Zhang and L. A. Archer, Boundary lubrication and surface mobility of mixed alkylsilane self-assembled monolayers. Journal of Physical Chemistry B, Vol. 107, pp. 13123-13132, 2003
[3]A. Ulman, Formation and structure of self-assembled monolayers. Chemical Reviews, Vol. 96, pp. 1533-1554, 1996
[4]K. Vijayamohanan and M. Aslam, Applications of self-assembled monolayers for biomolecular electronics. Applied Biochemistry and Biotechnology, Vol. 96, pp. 25-39, 2001
[5]Y. N. Xia, X. M. Zhao and G. M. Whitesides, Pattern transfer: Self-assembled monolayers as ultrathin resists. Microelectronic Engineering, Vol. 32, pp. 255-268, 1996
[6]O. Takai and K. Hayashi, Chapter 6 Micro/Nanolithography Using Self-Assembled Monolayers (SAMs), in Interface Science and Technology, pp. 141-175, 2007
[7]J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim and G. M. Whitesides, Microcontact printing of self-assembled monolayers: Applications in microfabrication. Nanotechnology, Vol. 7, pp. 452-457, 1996
[8]M. Tormen, T. Borzenko, B. Steffen, G. Schmidt and L. W. Molenkamp, Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing. Applied Physics Letters, Vol. 81, pp. 2094-2096, 2002
[9]Y. T. Wu, J. D. Liao, C. C. Weng, C. H. Chen, M. C. Wang and M. Zharnikov, Microcontact printing pattern as a mask for chemical etching: A scanning photoelectron microscopy study. Journal of Vacuum Science & Technology B, Vol. 25, pp. 1729-1736, 2007
[10]O. Harnack, I. Raible, A. Yasuda and T. Vossmeyer, Lithographic patterning of nanoparticle films self-assembled from organic solutions by using a water-soluble mask. Applied Physics Letters, Vol. 86, 2005
[11]J. Y. Huang, D. A. Dahlgren and J. C. Hemminger, Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold - A Simple Monolayer Phtoresist Utilizing Aqueous Chemistry. Langmuir, Vol. 10, pp. 626-628, 1994
[12]R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort and M. Zharnikov, Lithography with a focused soft X-ray beam and a monomolecular resist. Langmuir, Vol. 20, pp. 2050-2053, 2004
[13]M. Zharnikov, W. Geyer, A. Golzhauser, S. Frey and M. Grunze, Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface. Physical Chemistry Chemical Physics, Vol. 1, pp. 3163-3171, 1999
[14]M. Zharnikov and M. Grunze, Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects. Journal of Vacuum Science & Technology B, Vol. 20, pp. 1793-1807, 2002
[15]Y. T. Wu, J. D. Liao, C. C. Weng, Y. T. Hesieh, C. H. Chen, M. C. Wang and M. Zharnikov, Alkanethiolate Self-Assembled Monolayers As a Negative or Positive Resist for Electron Lithography. Journal of Physical Chemistry C, Vol. 113, pp. 4543-4548, 2009
[16]E. E. Kunhardt and L. H. Luessen, Electrical breakdown and discharges in gases. Published in cooperation with NATO Scientific Affairs Division [by] Plenum Press, 1983
[17]M. S. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of plasma processing technology : fundamentals, etching, deposition, and surface interactions. Noyes Publications, 1990
[18]K. Tachibana, Current status of microplasma research. Ieej Transactions on Electrical and Electronic Engineering, Vol. 1, pp. 145-155, 2006
[19]H. V. Boenig, Plasma Science and Technology. Cornell University Press, 1992
[20]C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, M. Grunze and M. Zharnikov, Modification of aliphatic self-assembled monolayers by free-radical-dominant plasma: The role of the plasma composition. Langmuir, Vol. 20, pp. 10093-10099, 2004
[21]K. Raiber, A. Terfort, C. Benndorf, N. Krings and H. H. Strehblow, Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surface Science, Vol. 595, pp. 56-63, 2005
[22]C. David, H. U. Muller, B. Volkel and M. Grunze, Low energy electron proximity printing using a self-assembled monolayer resist. Microelectronic Engineering, Vol. 30, pp. 57-60, 1996
[23]C. C. Weng, J. D. Liao, Y. T. Wu, S. C. Tsai, C. H. Chen and M. Zharnikov, Patterning of alkanethiolate self-assembled monolayers by downstream microwave nitrogen plasma: Negative and positive resist behavior. Journal of Vacuum Science & Technology B, Vol. 27, pp. 1949-1957, 2009
[24]J. N. Chai, B. M. Li and D. Y. Kwok, Selective surface modification and patterning by a micro-plasma discharge. Applied Physics Letters, Vol. 86, 2005
[25]M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen and S. Gwo, Multilength-Scale Chemical Patterning of Self-Assembled Monolayers by Spatially Controlled Plasma Exposure: Nanometer to Centimeter Range. Journal of the American Chemical Society, Vol. 131, pp. 10984-10991, 2009
[26]A. Marchesseault, N. Lucas and S. Büttgenbach, Contouring Flexible Plasma Stamps. 29th ICPIG, pp. 10, 2009
[27]N. Lucas, V. Ermel, M. Kurrat and S. Buettgenbach, Microplasma stamps for selective surface modification: design and characterization. Journal of Physics D-Applied Physics, Vol. 41, 2008
[28]N. Lucas, R. Franke, A. Hinze, C. P. Klages, R. Frank and S. Buettgenbach, Microplasma Stamps for Area-Selective Modification of Polymer Surfaces. Plasma Processes and Polymers, Vol. 6, pp. S370-S374, 2009
[29]I. Langmuir, Oscillations in ionized gases. Proceeding of the National Academy of Sciences of the United States of America, Vol. 14, pp. 627-637, 1928
[30]R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric and D. Ghosh, Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges. Journal of Power Sources, Vol. 170, pp. 308-323, 2007
[31]S. Kumar, V. Selvarajan, P. V. A. Padmanabhan and K. P. Sreekumar, Characterization and comparison between ball milled and plasma processed iron-aluminium thermal spray coatings. Surface & Coatings Technology, Vol. 201, pp. 1267-1275, 2006
[32]T. S. Ko, S. Yang, H. C. Hsu, C. P. Chu, H. F. Lin, S. C. Liao, T. C. Lu, H. C. Kuo, W. F. Hsieh and S. C. Wang, ZnO nanopowders fabricated by dc thermal plasma synthesis. Materials Science and Engineering B-Solid State Materials for Advanced Technology, Vol. 134, pp. 54-58, 2006
[33]S. Kumar and V. Selvarajan, In-flight formation and characterization of nickel aluminide powders in a dc thermal plasma jet. Chemical Engineering and Processing, Vol. 45, pp. 1029-1035, 2006
[34]S. Kumar and V. Selvarajan, Spheroidization of metal and ceramic powders in thermal plasma jet. Computational Materials Science, Vol. 36, pp. 451-456, 2006
[35]G. Shanmugavelayutham, V. Selvarajan, P. V. A. Padmanabhan, K. P. Sreekumar and N. K. Joshi, Effect of powder loading on the excitation temperature of a plasma jet in DC thermal plasma spray torch. Current Applied Physics, Vol. 7, pp. 186-192, 2007
[36]T. W. Cheng, M. Z. Huang, C. C. Tzeng, K. B. Cheng and T. H. Ueng, Production of coloured glass-ceramics from incinerator ash using thermal plasma technology. Chemosphere, Vol. 68, pp. 1937-1945, 2007
[37]H. Huang and L. Tang, Treatment of organic waste using thermal plasma pyrolysis technology. Energy Conversion and Management, Vol. 48, pp. 1331-1337, 2007
[38]A. Anders, Plasma and ion sources in large area coating: A review. Surface & Coatings Technology, Vol. 200, pp. 1893-1906, 2005
[39]P. Gupta, G. Tenhundfeld, E. O. Daigle and D. Ryabkov, Electrolytic plasma technology: Science and engineering - An overview. Surface & Coatings Technology, Vol. 201, pp. 8746-8760, 2007
[40]Y. Kuo and S. Lee, A new, room-temperature, high-rate plasma-based copper etch process. Vacuum, Vol. 74, pp. 473-477, 2004
[41]Y. Taga, Review of plasma thin-film technology in automobile industry. Surface & Coatings Technology, Vol. 112, pp. 339-346, 1999
[42]S. Kaplan, Plasma processes for wide fabric, film and non-wovens. Surface & Coatings Technology, Vol. 186, pp. 214-217, 2004
[43]R. Z. Li, L. Ye and Y. W. Mai, Application of plasma technologies in fibre-reinforced polymer composites: A review of recent developments. Composites Part a-Applied Science and Manufacturing, Vol. 28, pp. 73-86, 1997
[44]H. H. Chen, C. C. Weng, J. D. Liao, K. M. Chen and B. W. Hsu, Photo-resist stripping process using atmospheric micro-plasma system. Journal of Physics D-Applied Physics, Vol. 42, 2009
[45]H. H. Chen, C. C. Weng, J. D. Liao, L. M. Whang and W. H. Kang, Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system. Journal of Hazardous Materials, Vol. 201, pp. 185-192, 2012
[46]R. Foest, M. Schmidt and K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry, Vol. 248, pp. 87-102, 2006
[47]K. H. Becker, K. H. Schoenbach and J. G. Eden, Microplasmas and applications. Journal of Physics D-Applied Physics, Vol. 39, pp. R55-R70, 2006
[48]C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B-Atomic Spectroscopy, Vol. 61, pp. 2-30, 2006
[49]R. Hippler, H. Kersten, M. Schmidt and K.H. Schoenbach, Low Temperature Plamsma: Fundamentals, Technologies, and Techniques. Weiheim, Germany: Wiley-VCH., pp. 467-468, 2008
[50]W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser and M. Grunze, Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography. Applied Physics Letters, Vol. 75, pp. 2401-2403, 1999
[51]S. S. Datwani, R. A. Vijayendran, E. Johnson and S. A. Biondi, Mixed alkanethiol self-assembled monolayers as substrates for microarraying applications. Langmuir, Vol. 20, pp. 4970-4976, 2004
[52]D. Losic, J. G. Shapter and J. J. Gooding, Influence of surface topography on alkanethiol SAMs assembled from solution and by microcontact printing. Langmuir, Vol. 17, pp. 3307-3316, 2001
[53]Y. Tai, A. Shaporenko, M. Grunze and M. Zharnikov, Effect of irradiation dose in making an insulator from a self-assembled monolayer. Journal of Physical Chemistry B, Vol. 109, pp. 19411-19415, 2005
[54]Y. Tai, A. Shaporenko, W. Eck, M. Grunze and M. Zharnikov, Abrupt change in the structure of self-assembled monolayers upon metal evaporation. Applied Physics Letters, Vol. 85, pp. 6257-6259, 2004
[55]A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly. , 1991
[56]F. Schreiber, Structure and growth of self-assembling monolayers. Progress in Surface Science, Vol. 65, pp. 151-257, 2000
[57]P. Fenter, A. Eberhardt and P. Eisenberger, Self-Assembly of n-Alkyl Thiols as Disulfides on Au(111). Science, Vol. 266, pp. 1216-1218, 1994
[58]H. Sellers, A. Ulman, Y. Shnidman and J. E. Eilers, STRUCTURE AND BINDING OF ALKANETHIOLATES ON GOLD AND SILVER SURFACES - IMPLICATIONS FOR SELF-ASSEMBLED MONOLAYERS. Journal of the American Chemical Society, Vol. 115, pp. 9389-9401, 1993
[59]A. Ulman, Formation and Structure of Self-Assembled Monolayers. Chem. Rev., Vol. 96, pp. 1533-1554, 1996
[60]洪一弘, 曾平忠和曾金榮, U5球型光柵分光儀光束線的近況. 同步輻射研究中心簡訊, Vol. 43, pp. 17, 1999
[61]王兆恩和張正祥, U5聚頻磁鐵介紹. 同步輻射研究中心簡訊, Vol. 37, pp. 12, 1997
[62]崔古鼎, 同步輻射研究中心簡介 物理雙月刊, Vol. 20, pp. 607-612, 1998
[63]國家同步輻射研究中心, 同步加速器光源. 2005.
[64]J. J. Yeh, Atomic calculation of photoionization cross-sections and asymmetry parameters. Gordon and Breach science., 1993
[65]陳家浩, 從光電效應到光電子顯微術. 物理雙月刊, Vol. 27, pp. 666-669, 2005
[66]柯正浩, 同步幅射X光掃描式光電子能譜顯微儀 物理雙月刊, Vol. 20, pp. 510-516, 2002
[67]洪一弘, 李德輝, 殷廣鈐, 魏德新, 但唐諤, 柯陸詩, 陳建德, 曾金榮和莊東榮, 掃描式光電子能譜顯微儀簡介. 科學發展月刊, Vol. 29, pp. 21-28, 2000
[68]N. Saito, Y. Wu, K. Hayashi, H. Sugimura and O. Takai, Principle in imaging contrast in scanning electron microscopy for binary microstructures composed of organosilane self-assembled monolayers. Journal of Physical Chemistry B, Vol. 107, pp. 664-667, 2003
[69]A. G. Bittermann, S. Jacobi, L. F. Chi, H. Fuchs and R. Reichelt, Contrast studies on organic monolayers of different molecular packing in FESEM and their correlation with SFM data. Langmuir, Vol. 17, pp. 1872-1877, 2001
[70]G. P. Lopez, H. A. Biebuyck and G. M. Whitesides, SCANNING ELECTRON-MICROSCOPY CAN FORM IMAGES OF PATTERNS IN SELF-ASSEMBLED MONOLAYERS. Langmuir, Vol. 9, pp. 1513-1516, 1993



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top