跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳立捷
研究生(外文):Li-ChiehChen
論文名稱:電泳法製備二氧化鈦薄膜應用於膠態可撓式塑膠基板染料敏化太陽能電池之研究
論文名稱(外文):Electrophoretic Deposition of TiO2 Film Photoanodes for Use in All-plastic Flexible Dye-Sensitized Solar Cells Having Gel Electrolyte
指導教授:丁志明丁志明引用關係洪敏雄洪敏雄引用關係
指導教授(外文):Jyh-Ming TingJyh-Ming Ting
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:124
中文關鍵詞:可撓式染料敏化太陽能電池二氧化鈦電子擴散光散射膠態電解質電泳沉積法無黏著劑製程
外文關鍵詞:Flexible dye-sensitized solar cellstitanium dioxideelectron diffusionlight scatteringgel electrolyteelectrophoretic depositionbinder-free process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
由於全塑膠可撓式染料敏化太陽能電池的輕便性及適合連續性製程特性在現今有越來越重要的趨勢,然而二氧化鈦光電陽極於塑膠基板上必須要在150°C下熱處理之,此舉則必需添加黏著劑製備二氧化鈦鍍層,以提高二氧化鈦顆粒在塑膠基板上的連結性,因此在本研究使用無黏著劑的電泳沉積法及常溫加壓方式製備二氧化鈦光電陽極於ITO-PEN塑膠基板上以利於製備膠態可撓式染料敏化太陽能電池,其中光電陽極為20 nm的P25二氧化鈦顆粒及有無添加160 nm的ST41二氧化鈦顆粒構成。
我們在不同電泳沉積條件下得到不同的鍍層厚度及孔隙度的光電陽極,並證實電泳沉積過程中可以控制光電陽極厚度、孔隙度及染料吸附量,根據這些特色獲得不同的染料吸附度、染料吸附量及電子注入效率,進而主導電池的電子擴散時間及電子生存時間,結果顯示我們獲得最優越的電子擴散時間及電子生存時間分別為2.58 ms及32.05 ms,在ST41的添加提升光吸收度導致電子擴散速率提升約兩倍之多,歸因於ST41本身光散射效應所致,另外在光電轉換效率方面,有添加ST41的電池比P25所構成的電池效率提升約22%。

All-plastic flexible dye-sensitized solar cell (FDSC) is becoming more and more important due to its light-weight and suitable for roll-to-roll process. However, fabrication of the TiO2 photoanode on the plastic substrate must be done at tolerate a temperature lower than 150°C. The low temperature also posts a thread of binder contamination. In this study, we report a binder-free electrophoretic deposition (EPD) combined with mechanical compression for the fabrication TiO2 photoanodes on plastic substrates for use in all plastic substrate FDSCs having a gel electrolyte. The photoanodes were composed of 20-nm P25 TiO2 powders with and without the addition of 160-nm ST41 TiO2 powders.
The EPD was performed under various conditions to obtained photoanodes having different thicknesses and porosities. We show that the EPD process allows the control of not only the thickness but also the porosities and dye loading of the photoanode. Depending on these characteristics, photoanodes exhibiting different light absorbance, dye loadings, and electron injection efficiencies were obtained. These characteristics in turn dominate the electron diffusion time and electron lifetime. As a result, we obtained the highest electron diffusion time and electron life time was 2.58 ms and 32.05 ms, respectively. The addition of 160-nm TiO2 powders leads to enhanced light absorptance because they serve as light scattering centers, thus reducing the electron diffusion time. In other words, the electron diffusion rate of the addition of 160nm showed more than two-fold enrichment. Compared to the 20-nm TiO2 only cells, the addition of 160-nm TiO2 powders enhances the conversion efficiency by as much as 22%.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 IX
圖目錄 XI
第一章 緒論 1
1-1前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 5
2-1 染料敏化太陽能電池發展現況 5
2-2 染料敏化太陽能電池工作原理 6
2-3 染料敏化太陽能電池基本構造 8
2-3.1 透明導電基板 9
2-3.2 光電陽極 11
2-3.3 染料光敏化劑 14
2-3.4 電解質 18
2-3.5 對電極 22
2-4 電泳沉積 24
2-4-1 電泳沉積原理 24
2-4-2 懸浮液種類 25
2-4-3 膠體粒子分散 25
2-4-4 膠體粒子荷電方式與機制 26
2-4-5 電泳沉積動力學 28
2-4-6 電泳沉積法在染料敏化太陽能電池的應用與發展 29
第三章 實驗方法及分析儀器原理 30
3-1 實驗藥品與材料 30
3-2 實驗儀器設備 31
3-3 實驗流程 32
3-4 樣品特性分析方法及原理 37
3-4-1 粉末結晶結構分析 37
3-4-2 表面形貌分析 37
3-4-3厚度分析 38
3-4-4 比表面積分析 38
3-4-5 光學分析 39
3-4-6 化學鍵(Chemical bond)分析 41
3-4-7 DSC效率分析 42
3-4-8 入射光光電轉換效率 44
3-4-9 IMPS/VS (intensity modulated photocurrent / photovoltage spectroscopy) 45
第四章 結果與討論 48
4-1 商用二氧化鈦粉末及薄膜之特性分析 48
4-1-1 前言 48
4-1-2 XRD分析 49
4-1-2 電泳沉積薄膜其表面形態分析 51
4-1-3 不同電泳條件變化對光電陽極厚度的影響 53
4-1-4 比表面積分析 57
4-1-5 比表面積對光電陽極染料吸附量影響 60
4-2 商業用二氧化鈦奈米顆粒應用於膠態可撓式染料敏化太陽能電池之探討 62
4-2-1前言 62
4-2-2 效率量測 63
4-2-3 光收集效率(Light harvesting efficiency, LHE) 66
4-2-4 入射光光電轉換效率(IPCE ) 67
4-2-5 吸收光光電轉換效率(Absorbed photon-to-electron conversion efficiency, APCE) 68
4-2-6 載子收集效率(Charge collection efficiency, ηcc) 70
4-2-7 載子入射效率(Charge injection efficiency, ηinj) 72
4-3 商用TiO2光電陽極成長機制與FDSC最佳化分析 83
4-3-1 前言 83
4-3-2 光電陽極厚度與沉積時間的關係 84
4-3-3 散射層厚度與沉積時間的關係 88
4-3-4 不同二氧化鈦鍍層厚度比較 90
4-3-5光電陽極表面形貌分析 92
4-3-6 散射層表面形貌分析 94
4-3-7 傅立葉轉換紅外線分析 95
4-3-8光電陽極光學分析 97
4-3-9光電陽極染料吸附度分析 102
4-3-10 各種TiO2光電陽極的FDSC效率 104
4-3-11 IPCE分析 107
4-3-12 載子收集效率分析 110
4-4 可撓式膠態染料敏化太陽能電池之可靠度分析 112
4-4-1前言 112
4-4-2 膠態FDSC可靠度量測結果 113
第五章 結論 114
第六章 參考文獻 116
自述 124

1.Oregan, B. and M. Gratzel, A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature, 1991. 353(6346): p. 737-740.
2.Tsubomura, H., et al., DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL. Nature, 1976. 261(5559): p. 402-403.
3.Yella, A., et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011. 334(6056): p. 629-634.
4.Nazeeruddin, M.K., et al., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 2005. 127(48): p. 16835-16847.
5.Chen, C.Y., et al., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. Acs Nano, 2009. 3(10): p. 3103-3109.
6.Wang, M.K., et al., CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(44): p. 15976-+.
7.Cahen, D., et al., Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B, 2000. 104(9): p. 2053-2059.
8.Preat, J., D. Jacquemin, and E.A. Perpete, Towards new efficient dye-sensitised solar cells. Energy & Environmental Science, 2010. 3(7): p. 891-904.
9.Chen, C.-M., Y.-C. Hsu, and S.-J. Cherng, Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells. Journal of Alloys and Compounds, 2011. 509(3): p. 872-877.
10.Nazeeruddin, M.K., et al., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
11.Ito, S., et al., Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells. Chemical Communications, 2005(34): p. 4351-4353.
12.Weerasinghe, H.C., et al., Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010. 213(1): p. 30-36.
13.Ghosh, P. and T.G. Spiro, Photoelectrochemistry of tris(bipyridyl)ruthenium(II) covalently attached to n-type tin(IV) oxide. Journal of the American Chemical Society, 1980. 102(17): p. 5543-5549.
14.Kamat, P.V., et al., Photosensitization of Nanocrystalline Semiconductor Films. Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias. The Journal of Physical Chemistry, 1996. 100(12): p. 4900-4908.
15.Park, N.G., J. van de Lagemaat, and A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. Journal of Physical Chemistry B, 2000. 104(38): p. 8989-8994.
16.Wold, A., Photocatalytic properties of titanium dioxide (TiO2). Chemistry of Materials, 1993. 5(3): p. 280-283.
17.Yang, D.-J., et al., TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. Journal of Physics and Chemistry of Solids, 2008. 69(5–6): p. 1272-1275.
18.Kuang, D., et al., Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells. Acs Nano, 2008. 2(6): p. 1113-1116.
19.Jennings, J.R., et al., Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays: Transport, Trapping, and Transfer of Electrons. Journal of the American Chemical Society, 2008. 130(40): p. 13364-13372.
20.Li, D. and Y. Xia, Fabrication of Titania Nanofibers by Electrospinning. Nano Letters, 2003. 3(4): p. 555-560.
21.Song, M.Y., et al., Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synthetic Metals, 2005. 155(3): p. 635-638.
22.Huang, C.-Y., et al., The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006. 90(15): p. 2391-2397.
23.Ke, C.-R., L.-C. Chen, and J.-M. Ting, Photoanodes Consisting of Mesoporous Anatase TiO2 Beads with Various Sizes for High-Efficiency Flexible Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2012. 116(3): p. 2600-2607.
24.Jang, S.H., et al., Low-temperature formation of efficient dye-sensitized electrodes employing nanoporous TiO2 spheres. Electrochemistry Communications, 2010. 12(10): p. 1283-1286.
25.Sauvage, F., et al., Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiencies Over 10%. Acs Nano, 2010. 4(8): p. 4420-4425.
26.Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
27.Nazeeruddin, M.K., et al., CONVERSION OF LIGHT TO ELECTRICITY BY CIS-X2BIS(2,2'-BIPYRIDYL-4,4'-DICARBOXYLATE)RUTHENIUM(II) CHARGE-TRANSFER SENSITIZERS (X = CL-, BR-, I-, CN-, AND SCN-) ON NANOCRYSTALLINE TIO2 ELECTRODES. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
28.K. Nazeeruddin, M., P. Pechy, and M. Gratzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chemical Communications, 1997(18).
29.Nazeeruddin, M.K., et al., Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305.
30.Wang, P., et al., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications, 2002(24): p. 2972-2973.
31.Wadman, S.H., et al., Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications, 2007(19).
32.Hagfeldt, A., et al., Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11): p. 6595-6663.
33.Khazraji, A.C., et al., Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization. The Journal of Physical Chemistry B, 1999. 103(22): p. 4693-4700.
34.Ito, S., et al., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 2008(41): p. 5194-5196.
35.Wolfbauer, G., et al., A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2001. 70(1): p. 85-101.
36.Kubo, W., et al., Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators. Chemistry Letters, 1998(12): p. 1241-1242.
37.Wu, J.H., et al., A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Advanced Functional Materials, 2007. 17(15): p. 2645-2652.
38.Schmidt-Mende, L. and M. Grätzel, TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films, 2006. 500(1–2): p. 296-301.
39.Ding, I.K., et al., Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials, 2009. 19(15): p. 2431-2436.
40.Tennakone, K., et al., A DYE-SENSITIZED NANO-POROUS SOLID-STATE PHOTOVOLTAIC CELL. Semiconductor Science and Technology, 1995. 10(12): p. 1689-1693.
41.Perera, V.P.S. and K. Tennakone, Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Solar Energy Materials and Solar Cells, 2003. 79(2): p. 249-255.
42.Murakoshi, K., et al., Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chemistry Letters, 1997(5): p. 471-472.
43.Fredin, K., et al., Using a molten organic conducting material to infiltrate a nanoporous semiconductor film and its use in solid-state dye-sensitized solar cells. Synthetic Metals, 2009. 159(1-2): p. 166-170.
44.Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
45.Kay, A. and M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996. 44(1): p. 99-117.
46.Lee, W.J., et al., Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. Acs Applied Materials & Interfaces, 2009. 1(6): p. 1145-1149.
47.Roy-Mayhew, J.D., et al., Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. Acs Nano, 2010. 4(10): p. 6203-6211.
48.Wu, J., et al., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2008. 181(1): p. 172-176.
49.Li, Q.H., et al., Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2008. 10(9): p. 1299-1302.
50.Formento, A., L. Montanaro, and M.V. Swain, Micromechanical characterization of electrophoretic-deposited green films. Journal of the American Ceramic Society, 1999. 82(12): p. 3521-3528.
51.Lewis, J.A., Colloidal processing of ceramics. Journal of the American Ceramic Society, 2000. 83(10): p. 2341-2359.
52.Parks, G.A., The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemical Reviews, 1965. 65(2): p. 177-198.
53.Zhitomirsky, I., Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Advances in Colloid and Interface Science, 2002. 97(1–3): p. 279-317.
54.Van der Biest, O.O. and L.J. Vandeperre, Electrophoretic deposition of materials. Annual Review of Materials Science, 1999. 29: p. 327-352.
55.Damodaran, R. and B.M. Moudgil, Electrophoretic deposition of calcium phosphates from non-aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993. 80(2-3): p. 191-195.
56.Labib, M.E. and R. Williams, The use of zeta-potential measurements in organic solvents to determine the donor-acceptor properties of solid surfaces. Journal of Colloid And Interface Science, 1984. 97(2): p. 356-366.
57.Labib, M.E. and R. Williams, An experimental comparison between the aqueous pH scale and the electron donicity scale. Colloid & Polymer Science, 1986. 264(6): p. 533-541.
58.Jensen, W.B., The Lewis acid-base definitions: a status report. Chemical Reviews, 1978. 78(1): p. 1-22.
59.Koura, N., et al., PREPARATION OF VARIOUS OXIDE-FILMS BY AN ELECTROPHORETIC DEPOSITION METHOD - A STUDY OF THE MECHANISM. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1995. 34(3): p. 1643-1647.
60.Takayama, Y., et al., Zeta Potential of Various Oxide Particles and the Charging Mechanism. Journal of the Ceramic Society of Japan, 1999. 107(1242): p. 119-122.
61.Ishihara, T., K. Sato, and Y. Takita, Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 1996. 79(4): p. 913-919.
62.Hamaker, H.C., Formation of a deposit by electrophoresis. Transactions of the Faraday Society, 1940. 35: p. 279-287.
63.Ferrari, B. and R. Moreno, EPD kinetics: A review. Journal of the European Ceramic Society, 2010. 30(5): p. 1069-1078.
64.Zhang, Z.T., Y. Huang, and Z.Z. Jiang, ELECTROPHORETIC DEPOSITION FORMING OF SIC-TZP COMPOSITES IN A NONAQUEOUS SOL MEDIA. Journal of the American Ceramic Society, 1994. 77(7): p. 1946-1949.
65.Miyasaka, T., et al., Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers. Chemistry Letters, 2002(12): p. 1250-1251.
66.Miyasaka, T. and Y. Kijitori, Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers. Journal of the Electrochemical Society, 2004. 151(11): p. A1767-A1773.
67.Grinis, L., et al., Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry, 2008. 198(1): p. 52-59.
68.Chen, H.W., et al., Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010. 195(18): p. 6225-6231.
69.Chen, C.L., H.S. Teng, and Y.L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). Journal of Materials Chemistry, 2011. 21(3): p. 628-632.
70.Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005. 44(20): p. 6841-6851.
71.Franco, G., et al., Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells. The Journal of Physical Chemistry B, 1999. 103(4): p. 692-698.
72.Schlichthörl, G., et al., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 1997. 101(41): p. 8141-8155.
73.Fisher, A.C., et al., Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. Journal of Physical Chemistry B, 2000. 104(5): p. 949-958.
74.Hore, S., et al., Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006. 90(9): p. 1176-1188.
75.Rothenberger, G., P. Comte, and M. Gratzel, A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Solar Energy Materials and Solar Cells, 1999. 58(3): p. 321-336.
76.Benkstein, K.D., et al., Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. Journal of Physical Chemistry B, 2003. 107(31): p. 7759-7767.
77.Jayathilaka, P., et al., Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics, 2003. 156(1-2): p. 179-195.
78.Liu, Y., et al., Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells, 1998. 55(3): p. 267-281.
79.Chen, P., et al., Solid-state dye-sensitized solar cells using TiO2 nanotube arrays on FTO glass. Journal of Materials Chemistry, 2009. 19(30): p. 5325-5328.
80.Chi, C.-F., et al., Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. Journal of Materials Chemistry, 2011. 21(43): p. 17534-17540.
81.Watson, D.F. and G.J. Meyer, Electron injection at dye-sensitized semiconductor electrodes, in Annual Review of Physical Chemistry. 2005, Annual Reviews: Palo Alto. p. 119-156.
82.Frank, A.J., N. Kopidakis, and J. van de Lagemaat, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1165-1179.
83.Kruger, J., et al., Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy. Journal of Physical Chemistry B, 2003. 107(31): p. 7536-7539.
84.Dloczik, L., et al., Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy. Journal of Physical Chemistry B, 1997. 101(49): p. 10281-10289.
85.Kopidakis, N., et al., Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. Journal of Physical Chemistry B, 2003. 107(41): p. 11307-11315.
86.Duffy, N.W., et al., Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells. Journal of Physical Chemistry B, 2000. 104(38): p. 8916-8919.
87.Ammam, M., Electrophoretic deposition under modulated electric fields: a review. RSC Advances, 2012.
88.Krüger, H.G., et al., Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods. Journal of Materials Science, 2004. 39(3): p. 839-844.
89.Nam, S.H., T.K. Kim, and J.H. Boo, Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catalysis Today, 2012. 185(1): p. 259-262.
90.Huang, Z., X. Wen, and X. Xiao, Photoelectrochemical Properties of CuS-TiO2 Composite Coating Electrode and Its Preparation via Electrophoretic Deposition. Journal of the Electrochemical Society, 2011. 158(12): p. H1247-H1251.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊