|
1.Agency, I.E., Technology Roadmap: Solar Photovoltaic Energy, 2010: OECD Publishing. 2.Reyes-Reyes, M., Kim, K., and Carroll, D.L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61 blends, Applied Physics Letters, 87(8), 3, (2005). 3.Hoppe, H. and Sariciftci, N.S., Organic solar cells: An overview, Journal of Materials Research, 19(7), 1924, (2004). 4.Spadafora, E.J., Demadrille, R., Ratier, B., and Grévin, B., Imaging the Carrier Photogeneration in Nanoscale Phase Segregated Organic Heterojunctions by Kelvin Probe Force Microscopy, Nano Letters, 10(9), 3337, (2010). 5.Campoy-Quiles, M., Ferenczi, T., Agostinelli, T., Etchegoin, P.G., Kim, Y., Anthopoulos, T.D., Stavrinou, P.N., Bradley, D.D.C., and Nelson, J., Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends, Nature Materials, 7(2), 158, (2008). 6.Thompson, B.C. and Fréchet, J.M.J., Polymer–Fullerene Composite Solar Cells, Angewandte Chemie International Edition, 47(1), 58, (2008). 7.Jeong, W.-I., Lee, J., Park, S.-Y., Kang, J.-W., and Kim, J.-J., Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells, Advanced Functional Materials, 21(2), 343, (2011). 8.Gupta, D., Bag, M., and Narayan, K.S., Area dependent efficiency of organic solar cells, Applied Physics Letters, 93(16), 163301, (2008). 9.Pandey, A.K. and Nunzi, J.-M., Origin of photocurrent generation and collection losses in large area organic solar cells, Applied Physics Letters, 99(9), 093309, (2011). 10.Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., and Keszler, D.A., High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, Applied Physics Letters, 86(1), 013503, (2005). 11.Park, J.H., Choi, W.J., Oh, J.Y., Chae, S.S., Jang, W.S., Lee, S.J., Song, K.M., and Baik, H.K., Low-Temperature, Aqueous-Solution-Processed Zinc Tin Oxide Thin Film Transistor, Japanese Journal of Applied Physics, 50, 070201, (2011). 12.Yong-Hoon, K., Jeong-In, H., and Sung Kyu, P., Effect of Zinc/Tin Composition Ratio on the Operational Stability of Solution-Processed Zinc-Tin-Oxide Thin-film Transistors, Electron Device Letters, IEEE, 33(1), 50, (2012). 13.Oo, T.Z., Devi Chandra, R., Yantara, N., Prabhakar, R.R., Wong, L.H., Mathews, N., and Mhaisalkar, S.G., Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell, Organic Electronics, 13(5), 870, (2012). 14.Smestad, G.P., Optoelectronics of solar cells. Vol. 115. 2002, Washington: SPIE Press monograph. 15.Henry, C.H., Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, Journal of Applied Physics, 51(8), 4494, (1980). 16.Markvart, T. and CastaÑer, L., Practical Handbook of Photovoltaics - Fundamentals and Applications. Practical Handbook of Photovoltaics, ed. M. Tom and C. Luis, 2003, Amsterdam: Elsevier Science. 17.O'Regan, B. and Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(6346), 737, (1991). 18.Dennler, G. and Sariciftci, N.S., Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications, Proceedings of the IEEE, 93(8), 1429, (2005). 19.Jenny, N., Polymer:fullerene bulk heterojunction solar cells, Materials Today, 14(10), 462, (2011). 20.Li, G., Zhu, R., and Yang, Y., Polymer solar cells, Nature Photonics, 6(3), 153, (2012). 21.NREL. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. 22.Chapin, D.M., Fuller, C.S., and Pearson, G.L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, 25(5), 676, (1954). 23.Streetman, B.G. and Banerjee, S.K., Solid state electronic devices, 2006, New Jersey: Rearson Prentice Hall. 24.Shockley, W., The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors, Bell Sys. Tech. J., 28, 435, (1949). 25.Neamen, D.A., Semiconductor Physics and Devices: Basic Principles. 3 ed, 2003: McGraw-Hill. 26.Deibel, C. and Dyakonov, V., Polymer–fullerene bulk heterojunction solar cells, Reports on Progress in Physics, 73(9), 096401, (2010). 27.Spanggaard, H. and Krebs, F.C., A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials and Solar Cells, 83(2–3), 125, (2004). 28.Kumar, P. and Chand, S., Recent progress and future aspects of organic solar cells, Progress in Photovoltaics: Research and Applications, 20(4), 377, (2012). 29.Mayer, A., Scully, S., Hardin, B., Rowell, M., and McGehee, M., Polymer-based solar cells, Materials Today, 10(11), 28, (2007). 30.Kittel, C., Introduction to Solid State Physics. 8th ed, 2005: John Wiley & Sons, Inc. 31.Forrest, S.R., The Limits to Organic Photovoltaic Cell Efficiency, MRS Bulletin, 30, 28, (2005). 32.Zhang, F., Xu, X., Tang, W., Zhang, J., Zhuo, Z., Wang, J., Wang, J., Xu, Z., and Wang, Y., Recent development of the inverted configuration organic solar cells, Solar Energy Materials and Solar Cells, 95(7), 1785, (2011). 33.Chen, L.-M., Hong, Z., Li, G., and Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells, Advanced Materials, 21(14-15), 1434, (2009). 34.Hau, S.K., Yip, H.-L., and Jen, A.K.Y., A Review on the Development of the Inverted Polymer Solar Cell Architecture, Polymer Reviews, 50(4), 474, (2010). 35.Ferreira, S.R., Lu, P., Lee, Y.-J., Davis, R.J., and Hsu, J.W.P., Effect of Zinc Oxide Electron Transport Layers on Performance and Shelf Life of Organic Bulk Heterojunction Devices, The Journal of Physical Chemistry C, 115(27), 13471, (2011). 36.Kim, Y.-H., Lee, S.-H., Noh, J., and Han, S.-H., Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes, Thin Solid Films, 510(1–2), 305, (2006). 37.Soga, T., Nanostructured Materials for Solar Energy Conversion, 2006: ELSEVIER. 38.Yang, X. and Loos, J., Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control, Macromolecules, 40(5), 1353, (2007). 39.Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A.J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Advanced Functional Materials, 15(10), 1617, (2005). 40.Chen, W., Xu, T., He, F., Wang, W., Wang, C., Strzalka, J., Liu, Y., Wen, J., Miller, D.J., Chen, J., Hong, K., Yu, L., and Darling, S.B., Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells, Nano Letters, 11(9), 3707, (2011). 41.Mingebach, M., Deibel, C., and Dyakonov, V., Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells, Physical Review B, 84(15), 153201, (2011). 42.Brabec, C.J., Cravino, A., Meissner, D., Sariciftci, N.S., Fromherz, T., Rispens, M.T., Sanchez, L., and Hummelen, J.C., Origin of the Open Circuit Voltage of Plastic Solar Cells, Advanced Functional Materials, 11(5), 374, (2001). 43.Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., and Brabec, C.J., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Advanced Materials, 18(6), 789, (2006). 44.Günes, S., Neugebauer, H., and Sariciftci, N.S., Conjugated Polymer-Based Organic Solar Cells, Chemical Reviews, 107(4), 1324, (2007). 45.Ratcliff, E.L., Zacher, B., and Armstrong, N.R., Selective Interlayers and Contacts in Organic Photovoltaic Cells, The Journal of Physical Chemistry Letters, 2(11), 1337, (2011). 46.Steim, R., Kogler, F.R., and Brabec, C.J., Interface materials for organic solar cells, Journal of Materials Chemistry, 20(13), 2499, (2010). 47.Hau, S.K., Yip, H.-L., Acton, O., Baek, N.S., Ma, H., and Jen, A.K.Y., Interfacial modification to improve inverted polymer solar cells, Journal of Materials Chemistry, 18(42), 5113, (2008). 48.Chen, L.-M., Xu, Z., Hong, Z., and Yang, Y., Interface investigation and engineering – achieving high performance polymer photovoltaic devices, Journal of Materials Chemistry, 20(13), 2575, (2010). 49.Ma, H., Yip, H.-L., Huang, F., and Jen, A.K.Y., Interface Engineering for Organic Electronics, Advanced Functional Materials, 20(9), 1371, (2010). 50.Kim, J.Y., Kim, S.H., Lee, H.H., Lee, K., Ma, W., Gong, X., and Heeger, A.J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Advanced Materials, 18(5), 572, (2006). 51.Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., and Denk, P., Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters, 80(7), 1288, (2002). 52.Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics, 3(5), 297, (2009). 53.Hau, S.K., Yip, H.-L., Baek, N.S., Zou, J., O’Malley, K., and Jen, A.K.Y., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Applied Physics Letters, 92(25), 253301, (2008). 54.Derouiche, H., Miled, H.B., and Mohamed, A.B., Enhanced performance of a CuPc: PCBM based solar cell using bathocuproine BCP or nanostructured TiO2 as hole-blocking layer, physica status solidi (a), 207(2), 479, (2010). 55.Yip, H.-L., Hau, S.K., Baek, N.S., Ma, H., and Jen, A.K.Y., Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes, Advanced Materials, 20(12), 2376, (2008). 56.Yip, H.-L., Hau, S.K., Baek, N.S., and Jen, A.K.Y., Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells, Applied Physics Letters, 92(19), 193313, (2008). 57.Chan, I.M., Hsu, T.-Y., and Hong, F.C., Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode, Applied Physics Letters, 81(10), 1899, (2002). 58.Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proceedings of the National Academy of Sciences, 105(8), 2783, (2008). 59.Steirer, K.X., Ndione, P.F., Widjonarko, N.E., Lloyd, M.T., Meyer, J., Ratcliff, E.L., Kahn, A., Armstrong, N.R., Curtis, C.J., Ginley, D.S., Berry, J.J., and Olson, D.C., Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers, Advanced Energy Materials, 1(5), 813, (2011). 60.Jasieniak, J.J., Seifter, J., Jo, J., Mates, T., and Heeger, A.J., A Solution-Processed MoOx Anode Interlayer for Use within Organic Photovoltaic Devices, Advanced Functional Materials, n/a, (2012). 61.Zilberberg, K., Trost, S., Schmidt, H., and Riedl, T., Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells, Advanced Energy Materials, 1(3), 377, (2011). 62.Takanezawa, K., Tajima, K., and Hashimoto, K., Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer, Applied Physics Letters, 93(6), 063308, (2008). 63.Liao, H.-H., Chen, L.-M., Xu, Z., Li, G., and Yang, Y., Highly efficient inverted polymer solar cell by low temperature annealing of Cs[sub 2]CO[sub 3] interlayer, Applied Physics Letters, 92(17), 173303, (2008). 64.Chou, C.-Y., Huang, J.-S., Wu, C.-H., Lee, C.-Y., and Lin, C.-F., Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells, Solar Energy Materials and Solar Cells, 93(9), 1608, (2009). 65.Kuwabara, T., Sugiyama, H., Kuzuba, M., Yamaguchi, T., and Takahashi, K., Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer, Organic Electronics, 11(6), 1136, (2010). 66.Zilberberg, K., Trost, S., Meyer, J., Kahn, A., Behrendt, A., Lützenkirchen-Hecht, D., Frahm, R., and Riedl, T., Inverted Organic Solar Cells with Sol-Gel Processed High Work-Function Vanadium Oxide Hole-Extraction Layers, Advanced Functional Materials, 21(24), 4776, (2011). 67.Seo, H.O., Park, S.-Y., Shim, W.H., Kim, K.-D., Lee, K.H., Jo, M.Y., Kim, J.H., Lee, E., Kim, D.-W., Kim, Y.D., and Lim, D.C., Ultrathin TiO2 Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell, The Journal of Physical Chemistry C, (2011). 68.Manor, A., Katz, E.A., Tromholt, T., and Krebs, F.C., Electrical and Photo-Induced Degradation of ZnO Layers in Organic Photovoltaics, Advanced Energy Materials, 1(5), 836, (2011). 69.Lee, Y.-J., Yi, J., Gao, G.F., Koerner, H., Park, K., Wang, J., Luo, K., Vaia, R.A., and Hsu, J.W.P., Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices, Advanced Energy Materials, Early view, (2012). 70.Babcock, K.L. and Prater, C.B., Phase Imaging: Beyond Topography, Digital Instruments, Inc. 71.Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4(11), 864, (2005). 72.Xu, Z., Chen, L.-M., Yang, G., Huang, C.-H., Hou, J., Wu, Y., Li, G., Hsu, C.-S., and Yang, Y., Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells, Advanced Functional Materials, 19(8), 1227, (2009). 73.Xue, B., Vaughan, B., Poh, C.-H., Burke, K.B., Thomsen, L., Stapleton, A., Zhou, X., Bryant, G.W., Belcher, W., and Dastoor, P.C., Vertical Stratification and Interfacial Structure in P3HT:PCBM Organic Solar Cells, The Journal of Physical Chemistry C, 114(37), 15797, (2010). 74.Manor, A., Katz, E.A., Tromholt, T., Hirsch, B., and Krebs, F.C., Origin of size effect on efficiency of organic photovoltaics, Journal of Applied Physics, 109(7), 074508, (2011). 75.Sun, Y., Seo, J.H., Takacs, C.J., Seifter, J., and Heeger, A.J., Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer, Advanced Materials, 23(14), 1679, (2011). 76.Wang, J.-C., Weng, W.-T., Tsai, M.-Y., Lee, M.-K., Horng, S.-F., Perng, T.-P., Kei, C.-C., Yu, C.-C., and Meng, H.-F., Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer, Journal of Materials Chemistry, 20(5), 862, (2010). 77.Manor, A., Katz, E.A., Tromholt, T., and Krebs, F.C., Enhancing functionality of ZnO hole blocking layer in organic photovoltaics, Solar Energy Materials and Solar Cells, 98(0), 491, (2012). 78.Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., and Cao, G., Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells, Advanced Functional Materials, 22(10), 2194, (2012). 79.Moliton, A. and Nunzi, J.-M., How to model the behaviour of organic photovoltaic cells, Polymer International, 55(6), 583, (2006). 80.Servaites, J.D., Ratner, M.A., and Marks, T.J., Organic solar cells: A new look at traditional models, Energy & Environmental Science, 4(11), 4410, (2011). 81.Dyakonov, V., Mechanisms controlling the efficiency of polymer solar cells, Applied Physics A: Materials Science & Processing, 79(1), 21, (2004). 82.Dongaonkar, S., Servaites, J.D., Ford, G.M., Loser, S., Moore, J., Gelfand, R.M., Mohseni, H., Hillhouse, H.W., Agrawal, R., Ratner, M.A., Marks, T.J., Lundstrom, M.S., and Alam, M.A., Universality of non-Ohmic shunt leakage in thin-film solar cells, Journal of Applied Physics, 108(12), 124509, (2010). 83.Dongaonkar, S., Karthik, Y., Dapeng, W., Frei, M., Mahapatra, S., and Alam, M.A., On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells, Electron Device Letters, IEEE, 31(11), 1266, (2010). 84.Garcia-Belmonte, G., Munar, A., Barea, E.M., Bisquert, J., Ugarte, I., and Pacios, R., Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy, Organic Electronics, 9(5), 847, (2008). 85.Leever, B.J., Bailey, C.A., Marks, T.J., Hersam, M.C., and Durstock, M.F., In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy, Advanced Energy Materials, 2(1), 120, (2012). 86.Wu, S., Li, J., Tai, Q., and Yan, F., Investigation of High-Performance Air-Processed Poly(3-hexylthiophene)/Methanofullerene Bulk-Heterojunction Solar Cells, The Journal of Physical Chemistry C, 114(49), 21873, (2010). 87.Kuwabara, T., Kawahara, Y., Yamaguchi, T., and Takahashi, K., Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy, ACS Applied Materials & Interfaces, 1(10), 2107, (2009).
|