跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡孟諺
研究生(外文):Meng-YenTsai
論文名稱:應用於反轉式有機太陽能電池之氧化鋅錫陰極界面層
論文名稱(外文):Zinc Tin Oxide as Cathode Buffer Layer in Inverted Organic Solar Cells
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):Jen-Sue Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:117
中文關鍵詞:有機太陽能電池陰極界面層氧化鋅錫
外文關鍵詞:organic solar cellcathode buffer layerzinc tin oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討以P3HT:PCBM做為主動層材料之反轉式有機太陽電池。反轉式有機太陽電池之結構異於傳統型有機太陽能電池,在反轉式有機太陽電池中,透明電極ITO扮演陰極之角色,陽極則捨棄常用之低功函數金屬而採用高功函數金屬(例如:金)。本研究首先利用兩種不同工作面積(0.04 cm2及0.16 cm2)之元件結構搭配不同PEDOT/PSS比例之電洞傳輸層(AI4083及PH500),探討工作面積之尺寸效應對於電洞傳輸層PEDOT:PSS提升短路電流密度之功效,以及對於太陽能電池元件整體表現之影響。同樣製程條件下,以PEDOT:PSS PH500做為電洞傳輸層,工作面積為0.04 cm2之太陽能電池元件效率可達3.95%,而以工作面積為0.16 cm2之太陽能電池元件效率則降低至2.67%。
隨後研究採取PEDOT:PSS AI4083做為電洞傳輸層,並採用0.16 cm2之工作面積製作反轉式有機太陽能電池。實驗之主要變因為在主動層與ITO陰極之間插入以溶液法製備之氧化鋅薄膜、氧化鋅奈米顆粒、氧化鋅錫薄膜及氧化鋅錫奈米顆粒做為陰極界面層。氧化鋅薄膜及氧化鋅錫薄膜之退火溫度為200˚C,氧化物奈米顆粒則不需要經過熱退火處理。利用溶液法製備之氧化鋅奈米顆粒及氧化鋅錫奈米顆粒均為結晶性良好之氧化物。同時,本實驗改變氧化鋅錫薄膜中錫摻雜量,配合X光電子能譜儀之分析,試圖探討錫摻雜對於陰極界面層功能之影響,藉此改善太陽能電池元件之表現。
電性量測方面,本實驗於光照(illuminated)與無光照(dark)之環境下量測元件之電流電壓特性。光照情況下所得之電流電壓特性簡稱為亮電流電壓特性,從其中可取出串聯電阻、並聯電阻與各項光伏參數,包括短路電流密度、開路電壓、填充因子與光電轉換效率。無光照情況下所得之電流電壓特性簡稱為暗電流電壓特性,從其中可取出二極體之理想因子以及可觀察二極體之反向偏壓電流密度。分析亮電流電壓特性及暗電流電壓特性,可得知太陽能電池元件之行為,藉此比較陰極界面層對於元件之影響,並預測太陽能電池元件之效率表現。此外,本研究於無照光情況下利用阻抗分析儀量測使用不同陰極界面層之太陽能電池元件之阻抗特性,藉由阻抗分析探討陰極界面層與主動層之間之界面特性,並討論陰極界面層對於載子傳輸與再結合之影響。
研究結果顯示,利用溶液法製備錫摻雜之氧化鋅錫薄膜做為陰極界面層,藉由改變Zn/Sn之濃度比,元件表現也隨之改變。X光電子能譜分析結果也指出,氧化鋅錫薄膜中的錫摻雜量會影響氧化物薄膜中氧空缺之多寡,過多(Zn:Sn=1:x,x〉1)與過少(Zn:Sn=1:x,x〈1)之錫摻雜量均會引入較多的氧空缺。氧化鋅錫薄膜陰極界面層中Zn/Sn濃度比會影響太陽能電池元件之行為,影響範圍包括由亮電流電壓特性得知之串聯電阻、並聯電阻與由暗電流電壓特性得知之二極體理想因子,進而改變元件之短路電流密度及開路電壓等光伏特性,影響太陽能電池元件之效率表現。氧化鋅錫薄膜陰極界面層中,不足或過量之錫摻雜都會降低太陽能電池元件表現,例如由亮電流電壓推知之並聯電阻減少或是由暗電流電壓發現元件之二極體理想因子偏離1,最佳條件為氧化鋅錫薄膜(Zn:Sn=1:1),其短路電流密度為7.14 mA/cm2、開路電壓為0.62 V與填充因子為0.44,光電轉換效率可達1.96%。
比較使用溶液法製備之氧化物薄膜及氧化物奈米顆粒,使用奈米顆粒做為電子傳輸層可大幅提升太陽能電池元件之並聯電阻及填充因子,並改善光電轉換效率。利用氧化鋅錫奈米顆粒做為陰極界面層之太陽能電池,其短路電流密度為7.90 mA/cm2、開路電壓為0.62 V與填充因子為0.53,光電轉換效率可進一步達到2.60%。利用阻抗分析可得知,使用氧化鋅錫奈米顆粒做為陰極界面層可提升太陽能電池之平均載子壽命,減少再結合機率並提升短路電流密度。

In this study, we focus on the P3HT:PCBM bulk heterojunction inverted organic solar cells. Inverted organic solar cell, which differs from the conventional one, is fabricated with ITO transparent anode and high work function metal (eg. Au) cathode. We firstly investigate solar cell devices utilizing two different PEDOT:PSS (PH500 or AI4083) hole transport layers along with two different working areas (0.04 cm2 and 0.16 cm2) to explore the influences of different working areas on the short circuit enhancement via PEDOT:PSS hole transport layer and photovoltaic properties. Under the same processing condition, in which PH500 PEDOT:PSS is served as hole transport layer, the device with working area of 0.04 cm2 reaches 3.95% PCE; on the other hand, the PCE of device with working area of 0.16 cm2 is deteriorated to 2.67%.
In the following experiments, AI4083 PEDOT:PSS is used as hole transport layer and the working area is defined to be 0.16 cm2. Our research aims to investigate the cathode buffer layer, which is fabricated through solution routes. Four different kinds of cathode buffer layers, zinc oxide (ZnO) film, ZnO nanoparticles (NPs), zinc tin oxide (ZTO) film and ZTO NPs, are inserted between cathode and polymer active layer. Post-annealing treatment of 200˚C is needed for oxide films while the oxide NPs is used as-deposited. Solution-processed ZnO NPs and ZTO NPs are well crystallized as examined by transmission electron microscopy. With the aid of X-ray photoelectron spectroscopy (XPS), we examine the effect of Sn-doping concentration in ZTO films, when applied as the cathode buffer layers, on the photovoltaic performance.
From illuminated Current-Voltage (J-V) characteristics, we can extract series resistance (Rs), shunt resistance (Rsh) of the devices as well as photovoltaic parameters such as short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and power conversion efficiency (PCE). Moreover, diode ideal factor (n) and reverse-biased current can be investigated via dark J-V characteristics. Through illuminated and dark J-V characteristics, we can find that how cathode buffer layers affect photovoltaic behaviors and, thus, predict the output of the solar cell devices. Impedance analysis is carried out in the dark to investigate the interfacial properties between the cathode buffer layer and active layer, and it also provides a better understanding of carrier transport and recombination.
The function of ZTO film cathode buffer layers differs by changing the Zn/Sn ratio in ZTO films. The XPS results demonstrate that insufficient (Zn:Sn=1:x, x〈1) or excess (Zn:Sn=1:x, x〉1) Sn doping leads to more oxygen vacancies in the oxide film. The Sn doping concentration in ZTO film cathode buffer layer influences the Rs and Rsh (derived from illuminated J-V), and the diode ideal factor (derived from dark J-V). These above mentioned factors further influence photovoltaic properties and PCE. The optimized cathode buffer layer using ZTO films falls into the Zn:Sn=1:1 composition and the final photovoltaic performance of Jsc=7.14 mA/cm2, Voc=0.62 V, FF=0.44 and 1.96% PCE is reached.
Comparing oxide film and oxide NPs cathode buffer layers, it is observed that NPs cathode buffer layers increase Rsh and FF significantly and, therefore, improve the PCE. The solar cell device with ZTO NPs cathode buffer layer has Jsc of 7.90 mA/cm2, Voc of 0.62 V, FF of 0.53 and the PCE of 2.60% is achieved. By impedance analysis, ZTO NPs cathode buffer layer can improve the average carrier lifetime in the solar cell, leading to reduction of recombination and enhancement of Jsc.

摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 X
圖目錄 XII
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
第2章 理論基礎與文獻回顧 5
2-1 太陽能光譜 5
2-2 太陽能電池簡介與操作原理 8
2-2.1 太陽能電池分類 8
2-2.2 光電效應與光伏效應 12
2-2.3 二極體太陽能電池 13
2-2.3.1 理想太陽能電池 16
2-2.3.2 實際太陽能電池 20
2-3 有機太陽能電池 22
2-3.1 有機太陽能電池原理 24
2-3.2 傳統結構與反轉式結構 27
2-3.3 短路電流密度(Jsc) 29
2-3.4 開路電壓(Voc) 29
2-3.5 填充因子(Fill Factor) 30
2-4 緩衝層(buffer layer) 31
2-4.1 陰極緩衝層材料 34
2-4.2 陽極緩衝層材料 34
2-5 P3HT:PCBM反轉式有機太陽能電池比較 35
第3章 實驗方法與步驟 37
3-1 實驗材料 37
3-1.1 基板(substrate) 37
3-1.2 電洞傳輸層 (hole transport layer) 37
3-1.2.1 導電高分子 37
3-1.2.2 溶劑 38
3-1.3 主動層材料 (active layer) 38
3-1.3.1 施體材料(donor material) 38
3-1.3.2 受體材料(acceptor material) 39
3-1.3.3 溶劑 39
3-1.4 陰極緩衝層 40
3-1.4.1 ZnO及ZTO溶液 40
3-1.4.2 ZnO及ZTO nanoparticles 40
3-1.5 電極材料 40
3-2 實驗設備 41
3-2.1 旋轉塗佈機(spin coater) 41
3-2.2 熱蒸鍍系統(thermal evaporation system) 41
3-3 實驗流程 42
3-3.1 ITO基板 42
3-3.1.1 ITO基板之微影蝕刻 42
3-3.1.2 ITO基板之清洗 42
3-3.2 陰極緩衝層之製備 44
3-3.2.1 溶液法製備ZnO薄膜及ZTO薄膜 44
3-3.2.2 ZnO及ZTO nanoparticles 44
3-3.3 主動層之製備 44
3-3.4 陽極緩衝層之製備 45
3-3.5 金屬電極之製備 45
3-4 分析儀器 47
3-4.1 原子力顯微鏡(AFM) 47
3-4.2 穿透式電子顯微鏡(TEM) 48
3-4.3 X光光電子能譜儀(XPS) 48
3-4.4 太陽能電池效率量測 49
3-4.4.1 太陽光模擬器 49
3-4.4.2 電源電錶 49
3-4.5 阻抗分析儀 (Impedance analyzer) 49
第4章 實驗結果與討論 51
4-1 元件結構 51
4-2 使用不同工作面積及不同PEDOT:PSS之反轉式有機太陽能電池元件特性量測及分析 53
4-2.1 原子力顯微鏡(AFM)主動層表面分析 53
4-2.2 穿透式電子顯微鏡(TEM)影像分析 55
4-2.3 電流-電壓(J-V)曲線分析 57
4-3 使用ZnO作為陰極界面層之反轉式有機太陽能電池元件特性量測及分析 61
4-3.1 X光光電子能譜(XPS)分析 61
4-3.2 ZnO NPs之TEM及AFM影像分析 65
4-3.3 電流-電壓(J-V)曲線分析 68
4-4 使用ZTO作為陰極界面層之反轉式有機太陽能電池元件特性量測及分析 74
4-4.1 使用溶液法製備ZTO薄膜作為陰極界面層 74
4-4.1.1 XPS能譜分析 74
4-4.1.2 TEM及AFM影像分析 80
4-4.1.3 電流-電壓(J-V)曲線分析 83
4-4.2 使用溶液法製備ZTO奈米顆粒(Nanoparticles)作為陰極界面層 89
4-4.2.1 XPS能譜分析 89
4-4.2.2 TEM影像分析 94
4-4.2.3 電流-電壓(J-V)曲線分析 96
4-4.3 使用ZTO薄膜及ZTO奈米顆粒製備之陰極界面層之太陽能電池元件阻抗分析 100
4-4.3.1 使用ZTO薄膜陰極界面層之太陽能電池元件阻抗分析 102
4-4.3.2 使用ZTO NPs陰極界面層之太陽能電池元件阻抗分析 105
第5章 結論 108
第6章 參考資料 111


1.Agency, I.E., Technology Roadmap: Solar Photovoltaic Energy, 2010: OECD Publishing.
2.Reyes-Reyes, M., Kim, K., and Carroll, D.L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61 blends, Applied Physics Letters, 87(8), 3, (2005).
3.Hoppe, H. and Sariciftci, N.S., Organic solar cells: An overview, Journal of Materials Research, 19(7), 1924, (2004).
4.Spadafora, E.J., Demadrille, R., Ratier, B., and Grévin, B., Imaging the Carrier Photogeneration in Nanoscale Phase Segregated Organic Heterojunctions by Kelvin Probe Force Microscopy, Nano Letters, 10(9), 3337, (2010).
5.Campoy-Quiles, M., Ferenczi, T., Agostinelli, T., Etchegoin, P.G., Kim, Y., Anthopoulos, T.D., Stavrinou, P.N., Bradley, D.D.C., and Nelson, J., Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends, Nature Materials, 7(2), 158, (2008).
6.Thompson, B.C. and Fréchet, J.M.J., Polymer–Fullerene Composite Solar Cells, Angewandte Chemie International Edition, 47(1), 58, (2008).
7.Jeong, W.-I., Lee, J., Park, S.-Y., Kang, J.-W., and Kim, J.-J., Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells, Advanced Functional Materials, 21(2), 343, (2011).
8.Gupta, D., Bag, M., and Narayan, K.S., Area dependent efficiency of organic solar cells, Applied Physics Letters, 93(16), 163301, (2008).
9.Pandey, A.K. and Nunzi, J.-M., Origin of photocurrent generation and collection losses in large area organic solar cells, Applied Physics Letters, 99(9), 093309, (2011).
10.Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., and Keszler, D.A., High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, Applied Physics Letters, 86(1), 013503, (2005).
11.Park, J.H., Choi, W.J., Oh, J.Y., Chae, S.S., Jang, W.S., Lee, S.J., Song, K.M., and Baik, H.K., Low-Temperature, Aqueous-Solution-Processed Zinc Tin Oxide Thin Film Transistor, Japanese Journal of Applied Physics, 50, 070201, (2011).
12.Yong-Hoon, K., Jeong-In, H., and Sung Kyu, P., Effect of Zinc/Tin Composition Ratio on the Operational Stability of Solution-Processed Zinc-Tin-Oxide Thin-film Transistors, Electron Device Letters, IEEE, 33(1), 50, (2012).
13.Oo, T.Z., Devi Chandra, R., Yantara, N., Prabhakar, R.R., Wong, L.H., Mathews, N., and Mhaisalkar, S.G., Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell, Organic Electronics, 13(5), 870, (2012).
14.Smestad, G.P., Optoelectronics of solar cells. Vol. 115. 2002, Washington: SPIE Press monograph.
15.Henry, C.H., Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, Journal of Applied Physics, 51(8), 4494, (1980).
16.Markvart, T. and CastaÑer, L., Practical Handbook of Photovoltaics - Fundamentals and Applications. Practical Handbook of Photovoltaics, ed. M. Tom and C. Luis, 2003, Amsterdam: Elsevier Science.
17.O'Regan, B. and Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(6346), 737, (1991).
18.Dennler, G. and Sariciftci, N.S., Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications, Proceedings of the IEEE, 93(8), 1429, (2005).
19.Jenny, N., Polymer:fullerene bulk heterojunction solar cells, Materials Today, 14(10), 462, (2011).
20.Li, G., Zhu, R., and Yang, Y., Polymer solar cells, Nature Photonics, 6(3), 153, (2012).
21.NREL. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
22.Chapin, D.M., Fuller, C.S., and Pearson, G.L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, 25(5), 676, (1954).
23.Streetman, B.G. and Banerjee, S.K., Solid state electronic devices, 2006, New Jersey: Rearson Prentice Hall.
24.Shockley, W., The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors, Bell Sys. Tech. J., 28, 435, (1949).
25.Neamen, D.A., Semiconductor Physics and Devices: Basic Principles. 3 ed, 2003: McGraw-Hill.
26.Deibel, C. and Dyakonov, V., Polymer–fullerene bulk heterojunction solar cells, Reports on Progress in Physics, 73(9), 096401, (2010).
27.Spanggaard, H. and Krebs, F.C., A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials and Solar Cells, 83(2–3), 125, (2004).
28.Kumar, P. and Chand, S., Recent progress and future aspects of organic solar cells, Progress in Photovoltaics: Research and Applications, 20(4), 377, (2012).
29.Mayer, A., Scully, S., Hardin, B., Rowell, M., and McGehee, M., Polymer-based solar cells, Materials Today, 10(11), 28, (2007).
30.Kittel, C., Introduction to Solid State Physics. 8th ed, 2005: John Wiley & Sons, Inc.
31.Forrest, S.R., The Limits to Organic Photovoltaic Cell Efficiency, MRS Bulletin, 30, 28, (2005).
32.Zhang, F., Xu, X., Tang, W., Zhang, J., Zhuo, Z., Wang, J., Wang, J., Xu, Z., and Wang, Y., Recent development of the inverted configuration organic solar cells, Solar Energy Materials and Solar Cells, 95(7), 1785, (2011).
33.Chen, L.-M., Hong, Z., Li, G., and Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells, Advanced Materials, 21(14-15), 1434, (2009).
34.Hau, S.K., Yip, H.-L., and Jen, A.K.Y., A Review on the Development of the Inverted Polymer Solar Cell Architecture, Polymer Reviews, 50(4), 474, (2010).
35.Ferreira, S.R., Lu, P., Lee, Y.-J., Davis, R.J., and Hsu, J.W.P., Effect of Zinc Oxide Electron Transport Layers on Performance and Shelf Life of Organic Bulk Heterojunction Devices, The Journal of Physical Chemistry C, 115(27), 13471, (2011).
36.Kim, Y.-H., Lee, S.-H., Noh, J., and Han, S.-H., Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes, Thin Solid Films, 510(1–2), 305, (2006).
37.Soga, T., Nanostructured Materials for Solar Energy Conversion, 2006: ELSEVIER.
38.Yang, X. and Loos, J., Toward High-Performance Polymer Solar Cells:  The Importance of Morphology Control, Macromolecules, 40(5), 1353, (2007).
39.Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A.J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Advanced Functional Materials, 15(10), 1617, (2005).
40.Chen, W., Xu, T., He, F., Wang, W., Wang, C., Strzalka, J., Liu, Y., Wen, J., Miller, D.J., Chen, J., Hong, K., Yu, L., and Darling, S.B., Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells, Nano Letters, 11(9), 3707, (2011).
41.Mingebach, M., Deibel, C., and Dyakonov, V., Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells, Physical Review B, 84(15), 153201, (2011).
42.Brabec, C.J., Cravino, A., Meissner, D., Sariciftci, N.S., Fromherz, T., Rispens, M.T., Sanchez, L., and Hummelen, J.C., Origin of the Open Circuit Voltage of Plastic Solar Cells, Advanced Functional Materials, 11(5), 374, (2001).
43.Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., and Brabec, C.J., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Advanced Materials, 18(6), 789, (2006).
44.Günes, S., Neugebauer, H., and Sariciftci, N.S., Conjugated Polymer-Based Organic Solar Cells, Chemical Reviews, 107(4), 1324, (2007).
45.Ratcliff, E.L., Zacher, B., and Armstrong, N.R., Selective Interlayers and Contacts in Organic Photovoltaic Cells, The Journal of Physical Chemistry Letters, 2(11), 1337, (2011).
46.Steim, R., Kogler, F.R., and Brabec, C.J., Interface materials for organic solar cells, Journal of Materials Chemistry, 20(13), 2499, (2010).
47.Hau, S.K., Yip, H.-L., Acton, O., Baek, N.S., Ma, H., and Jen, A.K.Y., Interfacial modification to improve inverted polymer solar cells, Journal of Materials Chemistry, 18(42), 5113, (2008).
48.Chen, L.-M., Xu, Z., Hong, Z., and Yang, Y., Interface investigation and engineering – achieving high performance polymer photovoltaic devices, Journal of Materials Chemistry, 20(13), 2575, (2010).
49.Ma, H., Yip, H.-L., Huang, F., and Jen, A.K.Y., Interface Engineering for Organic Electronics, Advanced Functional Materials, 20(9), 1371, (2010).
50.Kim, J.Y., Kim, S.H., Lee, H.H., Lee, K., Ma, W., Gong, X., and Heeger, A.J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Advanced Materials, 18(5), 572, (2006).
51.Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., and Denk, P., Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters, 80(7), 1288, (2002).
52.Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics, 3(5), 297, (2009).
53.Hau, S.K., Yip, H.-L., Baek, N.S., Zou, J., O’Malley, K., and Jen, A.K.Y., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Applied Physics Letters, 92(25), 253301, (2008).
54.Derouiche, H., Miled, H.B., and Mohamed, A.B., Enhanced performance of a CuPc: PCBM based solar cell using bathocuproine BCP or nanostructured TiO2 as hole-blocking layer, physica status solidi (a), 207(2), 479, (2010).
55.Yip, H.-L., Hau, S.K., Baek, N.S., Ma, H., and Jen, A.K.Y., Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes, Advanced Materials, 20(12), 2376, (2008).
56.Yip, H.-L., Hau, S.K., Baek, N.S., and Jen, A.K.Y., Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells, Applied Physics Letters, 92(19), 193313, (2008).
57.Chan, I.M., Hsu, T.-Y., and Hong, F.C., Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode, Applied Physics Letters, 81(10), 1899, (2002).
58.Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proceedings of the National Academy of Sciences, 105(8), 2783, (2008).
59.Steirer, K.X., Ndione, P.F., Widjonarko, N.E., Lloyd, M.T., Meyer, J., Ratcliff, E.L., Kahn, A., Armstrong, N.R., Curtis, C.J., Ginley, D.S., Berry, J.J., and Olson, D.C., Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers, Advanced Energy Materials, 1(5), 813, (2011).
60.Jasieniak, J.J., Seifter, J., Jo, J., Mates, T., and Heeger, A.J., A Solution-Processed MoOx Anode Interlayer for Use within Organic Photovoltaic Devices, Advanced Functional Materials, n/a, (2012).
61.Zilberberg, K., Trost, S., Schmidt, H., and Riedl, T., Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells, Advanced Energy Materials, 1(3), 377, (2011).
62.Takanezawa, K., Tajima, K., and Hashimoto, K., Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer, Applied Physics Letters, 93(6), 063308, (2008).
63.Liao, H.-H., Chen, L.-M., Xu, Z., Li, G., and Yang, Y., Highly efficient inverted polymer solar cell by low temperature annealing of Cs[sub 2]CO[sub 3] interlayer, Applied Physics Letters, 92(17), 173303, (2008).
64.Chou, C.-Y., Huang, J.-S., Wu, C.-H., Lee, C.-Y., and Lin, C.-F., Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells, Solar Energy Materials and Solar Cells, 93(9), 1608, (2009).
65.Kuwabara, T., Sugiyama, H., Kuzuba, M., Yamaguchi, T., and Takahashi, K., Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer, Organic Electronics, 11(6), 1136, (2010).
66.Zilberberg, K., Trost, S., Meyer, J., Kahn, A., Behrendt, A., Lützenkirchen-Hecht, D., Frahm, R., and Riedl, T., Inverted Organic Solar Cells with Sol-Gel Processed High Work-Function Vanadium Oxide Hole-Extraction Layers, Advanced Functional Materials, 21(24), 4776, (2011).
67.Seo, H.O., Park, S.-Y., Shim, W.H., Kim, K.-D., Lee, K.H., Jo, M.Y., Kim, J.H., Lee, E., Kim, D.-W., Kim, Y.D., and Lim, D.C., Ultrathin TiO2 Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell, The Journal of Physical Chemistry C, (2011).
68.Manor, A., Katz, E.A., Tromholt, T., and Krebs, F.C., Electrical and Photo-Induced Degradation of ZnO Layers in Organic Photovoltaics, Advanced Energy Materials, 1(5), 836, (2011).
69.Lee, Y.-J., Yi, J., Gao, G.F., Koerner, H., Park, K., Wang, J., Luo, K., Vaia, R.A., and Hsu, J.W.P., Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices, Advanced Energy Materials, Early view, (2012).
70.Babcock, K.L. and Prater, C.B., Phase Imaging: Beyond Topography, Digital Instruments, Inc.
71.Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4(11), 864, (2005).
72.Xu, Z., Chen, L.-M., Yang, G., Huang, C.-H., Hou, J., Wu, Y., Li, G., Hsu, C.-S., and Yang, Y., Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells, Advanced Functional Materials, 19(8), 1227, (2009).
73.Xue, B., Vaughan, B., Poh, C.-H., Burke, K.B., Thomsen, L., Stapleton, A., Zhou, X., Bryant, G.W., Belcher, W., and Dastoor, P.C., Vertical Stratification and Interfacial Structure in P3HT:PCBM Organic Solar Cells, The Journal of Physical Chemistry C, 114(37), 15797, (2010).
74.Manor, A., Katz, E.A., Tromholt, T., Hirsch, B., and Krebs, F.C., Origin of size effect on efficiency of organic photovoltaics, Journal of Applied Physics, 109(7), 074508, (2011).
75.Sun, Y., Seo, J.H., Takacs, C.J., Seifter, J., and Heeger, A.J., Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer, Advanced Materials, 23(14), 1679, (2011).
76.Wang, J.-C., Weng, W.-T., Tsai, M.-Y., Lee, M.-K., Horng, S.-F., Perng, T.-P., Kei, C.-C., Yu, C.-C., and Meng, H.-F., Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer, Journal of Materials Chemistry, 20(5), 862, (2010).
77.Manor, A., Katz, E.A., Tromholt, T., and Krebs, F.C., Enhancing functionality of ZnO hole blocking layer in organic photovoltaics, Solar Energy Materials and Solar Cells, 98(0), 491, (2012).
78.Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C., and Cao, G., Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells, Advanced Functional Materials, 22(10), 2194, (2012).
79.Moliton, A. and Nunzi, J.-M., How to model the behaviour of organic photovoltaic cells, Polymer International, 55(6), 583, (2006).
80.Servaites, J.D., Ratner, M.A., and Marks, T.J., Organic solar cells: A new look at traditional models, Energy & Environmental Science, 4(11), 4410, (2011).
81.Dyakonov, V., Mechanisms controlling the efficiency of polymer solar cells, Applied Physics A: Materials Science & Processing, 79(1), 21, (2004).
82.Dongaonkar, S., Servaites, J.D., Ford, G.M., Loser, S., Moore, J., Gelfand, R.M., Mohseni, H., Hillhouse, H.W., Agrawal, R., Ratner, M.A., Marks, T.J., Lundstrom, M.S., and Alam, M.A., Universality of non-Ohmic shunt leakage in thin-film solar cells, Journal of Applied Physics, 108(12), 124509, (2010).
83.Dongaonkar, S., Karthik, Y., Dapeng, W., Frei, M., Mahapatra, S., and Alam, M.A., On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells, Electron Device Letters, IEEE, 31(11), 1266, (2010).
84.Garcia-Belmonte, G., Munar, A., Barea, E.M., Bisquert, J., Ugarte, I., and Pacios, R., Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy, Organic Electronics, 9(5), 847, (2008).
85.Leever, B.J., Bailey, C.A., Marks, T.J., Hersam, M.C., and Durstock, M.F., In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy, Advanced Energy Materials, 2(1), 120, (2012).
86.Wu, S., Li, J., Tai, Q., and Yan, F., Investigation of High-Performance Air-Processed Poly(3-hexylthiophene)/Methanofullerene Bulk-Heterojunction Solar Cells, The Journal of Physical Chemistry C, 114(49), 21873, (2010).
87.Kuwabara, T., Kawahara, Y., Yamaguchi, T., and Takahashi, K., Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy, ACS Applied Materials & Interfaces, 1(10), 2107, (2009).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top