跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉凡瑋
研究生(外文):Fan-WeiLiu
論文名稱:原子力顯微鏡矽探針在掃描中之相變化研究
論文名稱(外文):Investigation of Phase Transformation of Silicon AFM Probes during Scanning
指導教授:劉浩志
指導教授(外文):Hao-Chih Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:原子力顯微鏡探針磨耗單晶矽高壓相變化
外文關鍵詞:Atomic force microscopy probe (AFM probe)Wearsingle crystal siliconhigh pressurephase transformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
探針的磨耗是原子力顯微鏡於使用時一個無可避免且極為嚴重的問題,磨耗會減短探針使用壽命且造成影像解析度下降。使用輕敲模式在掃描過程中,探針針尖受與之表面垂直之作用力影響極大,甚至可能造成探針發生相變化,而相變後的晶體結構,其硬度等機械強度可能小於原相,因而造成磨耗現象。探討探針在掃描中是否發生相變化,並研判其途徑即是本文的主要研究課題。
本研究以矽探針為主體,先行以有限元素分析法模擬矽探針受力時,內部應力的分布情形,之後實際給予矽探針與之針尖表面垂直的作用力,使之發生磨耗現象,並以背向散射電子繞射分析針尖,藉由其菊池線圖及上述數據分析是否有相變化情形,研判矽探針受力時可能發生的相變化途徑,最後以探針的製造材料─單晶矽進行高壓實驗,探討其實際高壓相變之途徑。

Wear of probe tips is an inevitable and very serious issue during the use of atomic force microscope (AFM). Wear can introduce artifacts and reduce the image resolution. The force which effects on the probe tips’ surface vertically is too great so that it may induce probe phase transformation during scanning with tapping mode. The hardness of the crystal structure after phase transformation may be small than that of original phase, and it may induce wear of probe tips. Researching that if phase transformation occurs on probe tips or not is the major research in this study.
We focused on silicon probes in this study. At first, we used the finite element method to know how the stress distributed under loading. Then we gave force on silicon probes to make they wear, and then we used EBSD to analyze them. We developed the phase-transformation path by Kikuchi patterns and the data we got in this study. Finally, we used single crystal silicon which is the material of silicon probes to do the high-pressure experiment in order to know and confirm the high-pressure phase transformation path of silicon.

中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章、 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章、 原子力顯微鏡簡介 4
2.1 原理與應用 4
2.2 操作模式 6
2.2.1 接觸式原子力顯微鏡 7
2.2.2 非接觸式原子力顯微鏡 8
2.2.3 輕敲式原子力顯微鏡 9
第三章、 文獻回顧 10
3.1 探針的磨耗 10
3.2 濺鍍疏水膜之探針磨耗實驗及探針受力模擬分析 13
3.3 導致針尖破壞的相變化 23
第四章、 實驗方法與步驟 26
4.1 有限元素分析法 26
4.1.1 有限元素分析法簡介 26
4.1.2 模擬方法 27
4.1.3 模擬過程 28
4.2 探針受力實驗 30
4.2.1 實驗使用之原子力顯微鏡 31
4.2.2 選用探針之種類與構造 34
4.2.3 探針的彈性係數 36
4.2.4 力曲線 36
4.2.5 實驗參數及流程 37
4.3 背向散射電子繞射分析 40
4.3.1 菊池線圖 40
4.4 高壓實驗 43
4.4.1 大體積壓力機[31] 44
4.4.2 樣本腔結構及實驗參數 47
4.5 拉曼光譜分析 49
4.5.1 拉曼光譜原理 49
4.5.2 高壓實驗與拉曼光譜分析流程 52
第五章、 結果與討論 53
5.1 模擬結果 53
5.1.1 未鍍膜探針的磨耗情形 53
5.1.2 軟試片與硬試片的比較 55
5.1.3 模擬結果比較與探討 61
5.2 探針受力實驗 62
5.2.1 探針的彈性係數 62
5.2.2 力曲線與探針受力情形 66
5.2.3 探針受力之內部應力大小比較與探討 69
5.3 EBSD分析之菊池線圖 70
5.4 高壓實驗與拉曼光譜分析結果 77
5.4.1 高壓實驗前之單晶矽樣本以拉曼光譜儀分析 77
5.4.2 電阻分析 81
5.4.3 拉曼光譜儀分析 82
第六章、 結論與未來研究方向 91
6.1 結論 91
6.2 未來研究方向 92
參考文獻 94
附錄 97

[1]蔡毓楨, 薛富盛, 呂福興, and 吳宗明, 原子力顯微鏡實作訓練教材: 五南圖書, 2007.
[2]黃英碩, 掃描探針顯微術的原理及應用, 科儀新知, pp. 7-17, 2005.
[3]B. Bharat, Handbook of Micro / Nano Tribology: CRC Press, 1999.
[4]B.Bhushan, Introduction to Tribology. New York: John Wiley, 2002.
[5]A.D.Sarkar, Friction and Wear: Academic press, 1980.
[6]B.Bhushan, Handbook of Micro/Nano Tribology: CRC Press, 1995.
[7]Z. Tao and B. Bhushan, Surface modification of AFM silicon probes for adhesion and wear reduction, Tribology Letters, vol. 21, pp. 1-16, 2006.
[8]M. L. Bloo, H. Haitjema, and W. O. Pril, Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode, Measurement, vol. 25, pp. 203-211, 1999.
[9]B. Skårman, L. R. Wallenberg, S. N. Jacobsen, U. Helmersson, and C. Thelander, Evaluation of Intermittent Contact Mode AFM Probes by HREM and Using Atomically Sharp CeO2 Ridges as Tip Characterizer, Langmuir, vol. 16, pp. 6267-6277, 2000/07/01 2000.
[10]C. Su, L. Huang, K. Kjoller, and K. Babcock, Studies of tip wear processes in tapping mode™ atomic force microscopy, Ultramicroscopy, vol. 97, pp. 135-144, 2003.
[11]H. Edwards, R. McGlothlin, and E. U, Vertical metrology using scanning-probe microscopes: Imaging distortions and measurement repeatability, Journal of Applied Physics, vol. 83, pp. 3952-3971, 1998.
[12]P. Grutter, Zimmermann, x, W. Edling, and D. Brodbeck, Tip artifacts of microfabricated force sensors for atomic force microscopy, Applied Physics Letters, vol. 60, pp. 2741-2743, 1992.
[13]K. L. Westra, A. W. Mitchell, and D. J. Thomson, Tip artifacts in atomic force microscope imaging of thin film surfaces, Journal of Applied Physics, vol. 74, pp. 3608-3610, 1993.
[14]B.Bhushan, Spinger handbook of nanotechnology: Springer, 2007.
[15]陳政諴, 自組裝單分子層應用在原子力顯微鏡探針的磨耗行為研究, 材料科學及工程學系, 國立成功大學, 2010.
[16]林明彥, 原子力顯微儀的原理(下), 科儀新知, vol. 27, pp. 46-57, 2005.
[17]李昇樺, 以有限元素分析法去探討原子力顯微鏡探針的磨耗現象, 材料科學及工程學系, 國立成功大學, 2010.
[18]S.Minomura and H.G.Drickamer, Pressure-induced phase transformations in Si, Ge, and some III-V compounds, J. Phys. Chem.Solids, vol. 23, p. 451, 1961.
[19]J. Z. Hu, L. D. Merkle, C. S. Menoni, and I. L. Spain, Crystal data for high-pressure phases of silicon, Physical Review B, vol. 34, pp. 4679-4684, 1986.
[20]S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Experimental study of the crystal stability and equation of state of Si to 248 GPa, Physical Review B, vol. 41, pp. 12021-12028, 1990.
[21]A. Kailer, Y. G. Gogotsi, and K. G. Nickel, Phase transformations of silicon caused by contact loading, Journal Name: Journal of Applied Physics; Journal Volume: 81; Journal Issue: 7; Other Information: PBD: Apr 1997, pp. Medium: X; Size: pp. 3057-3063, 1997.
[22]R. Hull, Properties of Crystalline Silicon. London: INSPEC, 1999, 1999.
[23]M. Durandurdu and D. A. Drabold, High-pressure phases of amorphous and crystalline silicon, Physical Review B, vol. 67, p. 212101, 2003.
[24]C. Cheng, Uniaxial phase transition in Si: Ab initio calculations, Physical Review B, vol. 67, p. 134109, 2003.
[25]B. Haberl, Structural Characterization of Amorphous Silicon, Doctor of Philosophy, Australian National University, 2010.
[26]V. Kulikovsky, V. Vorlíček, P. Boháč, M. Stranyánek, R. Čtvrtlík, and A. Kurdyumov, Mechanical properties of amorphous and microcrystalline silicon films, Thin Solid Films, vol. 516, pp. 5368-5375, 2008.
[27]K. Mylvaganam and L. C. Zhang, Effect of bct-5 Si on the Indentation of Monocrystalline Silicon, Applied Mechanics and Materials, vol. 117 - 119, pp. 666-669, 2011.
[28]An Introduction to the Finite Element Method / J.N. Reddy, ed: Nueva York, EUA : McGraw-Hill, 1993.
[29]郭正祥, 嵌球式聯軸器的分析及改善, 機械工程系, 國立臺灣科技大學, 2010.
[30]Budget Sensors. Available: http://www.budgetsensors.com/tapping_mode_afm_aluminium.html
[31]R. R. Craig, Mechanics of materials, 3rd ed. NY: Hoboken, 2011.
[32]V. M. Group, Scanning Probe Microscopy
Training Notebook, 3.0 ed.: Digital Instruments, 2000.
[33]黃宏勝 and 林麗娟, FE-SEM/CL/EBSD分析技術簡介, 工業材料雜誌, vol. 201, pp. 99-108, 2003.
[34]花柏榕, 簡淑櫻, 龔慧貞, and 王雁賓, 探索物質在極限環境之研究-大體積壓力機簡介, 地球科學系, 國立成功大學, 2012.
[35]G. M. Pharr, W. C. Oliver, R. F. Cook, P. D. Kirchner, M. C. Kroll, T. R. Dinger, and D. R. Clarke, Electrical resistance of metallic contacts on silicon and germanium during indentation, Journal Name: Journal of Materials Research; (United States); Journal Volume: 7:4, pp. Medium: X; Size: Pages: 961-972, 1992.
[36]S. V. Ovsyannikov and V. V. Shchennikov, Phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure, Solid State Communications, vol. 132, pp. 333-336, 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top