( 您好!臺灣時間:2021/07/28 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Electromigration and Thermomigration Behavior of IMCs in Sn2.4Ag Flip Chip Solder Joint
指導教授(外文):Kwang-Lung Lin
外文關鍵詞:ElectromigrationThermomigrationLead Free SolderIntermetallic Compound
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
本研究係探討結構為Cu UBM/ Sn2.4Ag 銲錫/Cu基板之覆晶銲錫接點(Flip Chip Solder Joint),由電遷移與熱遷移所導致之介金屬化合物(Intermetallic Compound, IMC)反應。本研究以兩個銲錫接點為一組進行通電,電子流方向互相相反,另選一電流未流通、僅經歷時效熱處理的接點,作為通電實驗之對照組。臨場(in situ)連續觀察電遷移實驗乃將試片在室溫下施加7.5×104 A/cm2電流密度,利用臨場SEM及EDX分析界金屬化合物隨時間之變化;除臨場實驗外,亦將試片於1.5及3.0×104 A/cm2電流密度與環境溫度100℃、150℃及180℃下,通電330小時,藉分析IMC之尺寸變化,及其於銲錫接點中之分佈情形,進一步討論IMC之成長動力行為。
在臨場實驗中,發現銲錫接點歷經長時間通電後,Cu層/銲錫界面處的Cu-Sn IMC及接點內部的Ag3Sn IMC皆未有明顯的消長,僅接點內部Cu6Sn5 IMC顆粒的粒徑及數量增加。
在高溫通電實驗中,發現在1.5×104A/cm2,180℃及3.0×104A/cm2,150℃下通電會造成陰極端Cu層的嚴重消耗,溶出大量的Cu原子進入銲錫,且其遷移方向為電遷移及熱遷移效應的合力方向,並與Sn原子反應生成Cu6Sn5 IMC。而界面處的Cu3Sn IMC及銲錫內部的Ag3Sn IMC則並未受電遷移影響而明顯聚集在陽極端,其尺寸僅隨溫度呈現線性的成長趨勢;藉由動力學的分析發現Ag3Sn IMC在通電的情況下,成長活化能會下降至與液相合金反應近似,且反應機制由時效熱處理時的擴散控制轉變為反應控制。
The present study investigated the effect of electromigration and thermomigration on the evolution of intermetallic compounds (IMCs) in the flip chip Cu/Sn2.4Ag/Cu solder joints. In this study, two joints in a set were used with different directions of electrical current flow. In contrast, another joint mainly experienced heat from the ambient temperature without current stressing. The in situ current stressing test was started under current density of 7.5×104 A/cm2 under room temperature. In addition, under the high-temperature current stressing test, the solder joints were stressed with various current densities of 1.5 and 3.0×104 A/cm2 at 100℃, 150℃ and 180℃ respectively. The kinetic behavior of the growth of IMCs was investigated by analyzing their size and their distribution of IMCs in the joints.
In the in situ experiment, the thickness of Cu3Sn and Cu6Sn5 IMC at the interface between the Cu layer and the solder did not change significantly. However, the size of Cu6Sn5 IMC particles in the solder matrix became larger during current stressing.
Under the current density of 1.5×104A/cm2 at 180℃ and under 3.0×104A/cm2 at 150℃, uneven consumption of the cathodic Cu pad was observed. The dissolved Cu atoms migrated as a result of the driving force induced by electromigration and thermomigration, and formed Cu6Sn5 IMC with Sn atoms. However, the Cu3Sn IMC and Ag3Sn IMC did not congregate at the anode side, and their size increased linearly with temperature.
From the kinetics studies, it is revealed that the value of activation energy required for the growth of Ag3Sn IMC during current stressing decreases to the value of activation energy in liquid alloy, and the mechanism of this reaction changes from diffusion controlled under thermal aging to reaction controlled under current stressing.
中文摘要 I
英文摘要 II
致謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 覆晶接合技術及銲錫接點結構 1
1-1-1 覆晶接合技術 1
1-1-2 銲錫接點結構 1
1-2 錫/銀/銅系統之介金屬化合物 3
1-2-1 錫/銅之界面反應 3
1-2-2 錫/銀之介金屬化合物 5
1-3 電遷移簡介 5
1-4 熱遷移簡介 8
1-5 錫-銀-銅銲錫之電遷移與熱遷移現象 8
1-6 研究動機與目的 9
第二章 實驗方法與步驟 10
2-1 實驗構想 10
2-2 電遷移實驗試片 10
2-3 SEM及EDX臨場(in situ)連續觀察電遷移實驗 13
2-4 通電實驗與實驗條件 13
第三章 結果與討論 21
3-1 通電前Sn2.4Ag銲錫接點之顯微結構分析 21
3-2 Sn2.4Ag銲錫接點之通電實驗 21
3-2-1 臨場(in situ)連續觀察之SEM及EDX分析 21
3-2-2 不同通電條件之SEM及EDX分析 26
3-2-3 Cu6Sn5 IMC之顯微結構變化比較 49
3-2-4 Cu3Sn IMC之顯微結構變化比較 55
3-2-5 Ag3Sn IMC之顯微結構變化比較 55
3-2-6 時效熱處理實驗之IMC形貌與分析 58
3-3 IMC成長之電遷移及熱遷移動力學分析 58
3-3-1 Cu-Sn IMC成長之電遷移及熱遷移動力學分析 58
3-3-2 Ag3Sn IMC成長之動力學分析 68
第四章 結論 75
參考文獻 76
1.J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, 1995, Chapter 1.
2.J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chap. 1.
3.M. Pecht, Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines, John Wiley & Sons, New York, Chapter 7, 1994.
4.F.Z. Ren, P. Liu, S.G. Jia, B.H. Tian, and J.H. Su, “Adhesion Strength of Ni film on Ti Substrate Characterized by Three-point Bend Vest, Peel Test and Theoretic Calculation, Materials Science and Engineering: A, Vol. 419, 2006, pp. 233~237.
5.A. Kinbara, E. Kusano, T. Kamiya, I. Kondo, and O. Takenaka, “Evaluation of Adhesion Strength of Ti films on Si 100/ by the Internal Stress Method, Thin Solid Films, Vol. 317, 1998, pp. 165~168.
6.A. Bosseboeuf, M. Dupeux, M. Boutry, T. Bourouina, D. Bouchier, and D. Débarre, “Characterization of W Films on Si and SiO2/Si Substrates by X-Ray Diffraction, AFM and Blister Test Adhesion Measurements, Microsc. Microanal. Microstruct., Vol. 8, 1997, pp. 261~272.
7.X. D. Wang, Z. X. Shen, J. L. Zhang, H. F. Jiao, X. B. Cheng, L. Y. Chen, and Z. S. Wang, “Submicrometer Aluminum Spheres’ Adhesion to Planar Silicon Substrates Langmuir, Vol. 26, No. 17, 2010, pp. 13903~13906.
8.M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics, Materials Science and Engineering, Vol. 27, 2000, pp. 95~141.
9.E. B. Webb III, G. S. Grest, D. R. Heine, and J. J. Hoyt, “Dissolutive Wetting of Ag on Cu: A Molecular Dynamics Simulation Study, Acta Materialia, Vol. 53, 2005, pp. 3163~3177.
10.S. Wiegele, P. Thompson, R. Lee, and E. Ramsland, “Reliability and Process Characterization of Electroless Nickel-Gold/Solder Flip Chip Interconnect and Technology, Proceedings of 48th Electronic Components and Technology Conference, May 25-28, Washington, 1998, pp. 861~866.
11.J. H. Lau, Chip on Board Techno; ogies for Multichip Modules, Van Nostrand Reinhold, New York, 1995, Chapter 5.
12.T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, Vol. 1, 1986, p. 964~965.
13.P. T. Vianco, K. L. Erickson, and P. L. Hopkins, “Solid State Intermetallic Compound Growth Between Copper and High Temperature ,Tin-rich Solders, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp.721~727.
14.K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films, Acta Metallurgica, Vol. 21, No. 4, 1973, pp. 347~354.
15.K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Recation in Bimetallic Cu-Sn Thin Films, Acta Metallurgica, Vol. 30, No. 5, 1982, pp. 947~952.
16.H. T. Lee , Y. F. Chen , T. F. Hong, and K. T. Shih, “Effect of Cooling Rate on Ag3Sn Formation in Sn-Ag Based Lead-Free Solder, 11th Electronics Packaging Technology Conference, December 9-11, Singapore, 2009, pp. 875~878.
17.T. L. Su, L. C. Tsao, S. Y. Chang, and T.H. Chuang, “Morphology and Growth Kinetics of Ag3Sn During Soldering Reaction Between Liquid Sn and an Ag Substrate, Journal of Materials Engineering and Performance, Vol. 11, 2002, pp. 365~368.
18.V. B. Fiks, On the Mechanism of the Mobility of Ions in Metals, Soviet Physics Solid State, 1959, p. 14.
19.C. Y. Chang and S. M. Sze, ULSI Technology, the McGRAW-HILL, 1996, p. 20.
20.G. A. Rinne, “Issues in Accelerated Electromigration of Solder Bumps, Microelectronics Reliability, Vol. 43, No. 12, 2003, pp. 1975~1980.
21.J. V. Ek and A. Lodder, “Electromigration of Hydrogen in Metals, Defect and Diffusion Forum, Vol. 115, 1994, pp. 3~4.
22.W. Zhou, L. J. Liu, B. L. Li, and P. Wu, “Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study, Journal of Electronic Materials, Vol. 38, No. 6, 2009, pp. 866~872.
23.H. W. He, G. C. Xu, and F. Guo, “Electromigration-induced Bi-rich Whisker Growth in Cu/Sn–58Bi/Cu Solder Joints, Journal of Materials Science, Vol. 45, No. 2, 2010, pp. 334~340.
24.W. Roush and J. Jaspal, “Thermomigration in Lead-indium Solder, 32nd Electronic Components Conference, May 10-12, San Diego, 1982, pp. 342-345.
25.C. Chen, H. M. Tong, and K.N. Tu, “Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joint, Annual Review of Materials Research, Vol. 40, 2010, pp. 531-555.
26.E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, “Current-crowding-induced Electromigration Failure in Flip Chip Solder Joints, Applied Physics Letters, Vol. 80, 2002, pp. 580~582.
27.J. Y. Song, J. Yu, and T. Y. Lee, “Effects of Reactive Diffusion on Stress Evolution in Cu-Sn Films, Scripta Materialia, Vol. 51, 2004, pp. 167-170.
28.D. Chen, C. E. Ho, and J. C. Kuo, “Current Stressing-induced Growth of Cu3Sn in Cu/Sn/Cu Solder Joints, Materials Letters, Vol. 65, 2011, pp. 1276~1279.
29.B. Chao, S. H. Chae, X. F. Zhang, K. H. Lu, M. Ding, J. Im, and P. S. Ho, “Electromigration Enhanced Intermetallic Growth and Void Formation in Pb-free Solder Joints, Journal of Applied Physics, Vol. 100, 2006, pp. 084909-1~10.
30.J. W. Nah, K. Chen, K. N. Tu, B. R. Su, and C. Chen, “Mechanism of Electromigration-induced Failure in Flip-chip Solder Joints With a 10-mu m-thick Cu Under-bump Metallization, Journal of Materials Research, Vol. 22, 2007, pp. 763-769.
31.S. H. Lee and C. M. Chen, “Electromigration in a Sn-3 wt.%Ag-0.5 wt.%Cu-3 wt.%Bi Solder Stripe Between Two Cu Electrodes Under Current Stressing, Journal of Electronic Materials, Vol. 40, No. 9, 2011, pp. 1943~1949.
32.K. Lee, K. S. Kim, Y. Tsukada, K. Suganuma, K. Yamanaka, S. Kuritani, and M. Ueshima, “Effects of the Crystallographic Orientation of Sn on the Electromigration of Cu/Sn–Ag–Cu/Cu Ball Joints, Journal of Materials Research, Vol. 26, No. 3, 2011, pp. 467~474.
33.M. Lu, D. Y. Shih, P. Lauro, C. Goldsmith, and D. W. Henderson, “Effect of Sn Grain Orientation on Electromigration Degradation Mechanism in High Sn-based Pb-free Solders, Applied Physics Letters, Vol. 92, 2008, pp. 211909-1~3.
34.W. Y. Chen, T. C. Chiu, K. L. Lin, and Y. S. Lai, “Electrorecrystallization of Intermetallic Compound in the Sn0.7Cu Solder Joint, Intermetallics, Vol. 26, 2012, pp. 40~43.
35.B. F. Dyson, T. R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin, Journal of Applied Physics, Vol. 38, 1967, pp. 3408.
36.B. Y. Wu, M. O. Alam, Y. C. Chan, and H. W. Zhong, “Joule Heating Enhanced Phase Coarsening in Sn37Pb and Sn3.5Ag0.5Cu Solder Joints During Current Stressing, Journal of Electronic Materials, Vol. 37, No. 4, 2008, pp. 469~476.
37.J. Sigelko, S. Choi, K. N. Subramanian, and J. P. Lucas, “The Effect of Small Additions of Copper on the Aging Kinetics of the Intermetallic Layer and Intermetallic Particles of Eutectic Tin-silver Solder Joints, Journal of Electronic Materials, Vol. 29, No. 11, 2000, pp. 1307~1311.
38.A. Sharif and Y. C. Chan, “Effect of Indium Addition in Sn-rich Solder on the Dissolution of Cu, Journal of Alloys and Compounds, Vol. 390, 2005, pp. 67~73.
39.R. W. Wu, L. C. Tsao, S. Y. Chang, C. C. Jain, and R. S. Chen, “Interfacial Reactions Between Liquid Sn3.5Ag0.5Cu Solders and Ag Substrates, Journal of Materials Science: Materials in Electronics: Mater Electron, Vol. 22, 2011, pp. 1181~1187.
40.H. T. Lee and M. H. Chen, “Influence of Intermetallic Compounds on the Adhesive Strength of Solder Joints, Materials Science and Engineering: A, Vol. 333, Issues 1-2, 2002, pp. 24~34.
41.C. Yu, Y. Yang, H. Lu, and J. M. Chen, “Effects of Current Stressing on Formation and Evolution of Kirkendall Voids at Sn–3.5Ag/Cu Interface, Journal of Electronic Materials, Vol. 39, No. 8, 2010, pp. 1309~1314.
42.W. J. Deng, K. L. Lin, Y. T. Chiu, and Y. S. Lai, “Electromigration-Induced Accelerated Consumption of Cu Pad in Flip Chip Sn2.6Ag Solder Joints, 61st Electronic Components and Technology Conference, May 31-June 3, Lake Buena Vista, 2011, pp. 114~117.
43.D. Yang, Y. C. Chan, and B. Y. Wu, “Electromigration and Thermomigration Behavior of Flip Chip Solder Joints in High Current Density Packages, Journal of Materials Research, Vol. 23, No. 9, 2008, pp. 2333~2339.
44.Y. W. Lin, J. H. Ke, H. Y. Chuang, Y. S. Lai, and C. R. Kao, “Electromigration in Flip Chip Solder Joints Under Extra High Current Density, Journal of Applied Physics, Vol. 107, 2010, pp. 073516-1~4.
45.J. F. Li, P. A. Agyakwa, and C. M. Johnson, “Kinetics of Ag3Sn Growth in Ag–Sn–Ag System During Transient Liquid Phase Soldering Process, Acta Mater, Vol. 58, 2010, pp. 3429~3443.
46.Y. T. Chiu, K. L. Lin, and Y. S. Lai, “Dissolution of Sn in a SnPb Solder Bump Under Current Stressing, Journal of Applied Physics, Vol. 111, 2012, pp. 043517-1~8.
第一頁 上一頁 下一頁 最後一頁 top