跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳郁鈞
研究生(外文):Yu-ChunChen
論文名稱:濺鍍法製備二氧化鈦奈米柱之研究
論文名稱(外文):Exploration of TiO2 nanorods using sputtering
指導教授:張高碩
指導教授(外文):Kao-Shuo Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:82
中文關鍵詞:二氧化鈦 (TiO2)奈米柱濺鍍模板技術
外文關鍵詞:TiO2nanorodssputteringtemplate technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用兩種不同方法對基板做預處理後, 濺鍍二氧化鈦薄膜以期獲得奈米柱之結構。
第一種方法在濺鍍前先以反應離子蝕刻機對基板表面蝕刻使其表面粗糙,基板在不同蝕刻情況下由於表面粗糙程度不同進而影響薄膜成長,其結構及成長晶向有所不同,在此實驗中雖然尚未得到奈米柱結構的薄膜,但有類似花狀的奈米結構成長於其上。
另一製程方式則是利用水熱法得到奈米柱薄膜做為模板,再利用濺鍍法將二氧化鈦沉積於奈米柱上。由實驗結果可知,沉積於奈米柱上的薄膜會隨著之成長,而濺鍍原子的動能對於模板上的薄膜成長方式有很大的影響,由於濺鍍粒子在濺鍍過程會產生碰撞,故在較高的濺鍍電源下有較多的原子被擊發而產生較多的碰撞,因此動能較低不易隨模板成長,而在適當濺鍍電源下濺鍍原子有較高動能能夠隨著各種不同模板成長。

In this study, two methods to grow the TiO2 nanorod structures were investigated: the RIE (reactive ion etching) approach and a seed layer approach using sputtering. For the RIE study, different RIE conditions were explored to make different degree of roughness on the Si substrates to see how it affects the growth of TiO2 thin films. We found the surface morphology of the substrate not only influences the structures but also the crystallinity of the TiO2 film. Although nanorod structures were not yet obtained, nanostructured TiO2 such as nanoflowers was grown, which constitutes an area for future research.
For the seed layer approach, different structures of seed layers with varied thicknesses using hydrothermal was adopted. Then, sputtering was employed to deposit a TiO2 film directly on top of the seed layers. We found the features of the seed layers will significantly affect the growth of the sputtered TiO2 films. The sputtering deposition power changes the growth mechanism of the TiO2 films as well due to the varied mobility of the sputtered atoms depositing on the substrate. We have studied a variety of combinations of different seed layers and deposition powers and found that higher density of the nanoparticles in the seed layers with lower deposition power is promising to get TiO2 nanorods.

Abstract I
摘要 III
致謝 IV
Content V
Content of Table VII
Content of Figures VIII
Chapter 1 Introduction 1
1.1 Climate Change 1
1.2 Energy Crisis 2
1.3 Solar Cells 4
1.3.1 Crystalline Silicon Solar Cells 6
1.3.2 Thin Films Solar Cells 7
1.3.3 Cadmium Telluride Solar Cells 8
1.3.4 Copper Indium Gallium Selenide 9
1.3.5 Gallium Arsenide Multijunction 10
1.3.6 Quantum Dot Solar Cells (QDSCs) 11
1.3.7 Organic/Polymer Solar Cells 13
1.3.8 Dye-Sensitized Solar Cells (DSSCs) 14
1.4 Titanium Dioxide (TiO2) Nanorods 19
1.5 Magnetron Sputtering 24
Chapter 2 Experimental Methods 26
2.1 Reactive Ion Etching (RIE) 28
2.2 Magnetron Sputtering Set-up 32
2.3 Samples Characterizations 33
2.3.1 New Alpha-Step Profilometer 33
2.3.2 Scanning Electron Microscope (SEM) 34
2.3.3 X-Ray Diffraction (XRD) 37
Chapter 3 Results and Discussion 38
3.1 Surface Morphology 39
3.2 Template Effect 49
3.2.1 Template 1 50
3.2.2 Template 2 53
3.2.3 Template 3 59
3.2.4 Template 4 67
3.2.5 Template 5 73
Chapter 4 Conclusions 76
Chapter 5 Future Work 78
References 79

1Renewables 2010 Global Status Report.
2C. H. Liao, W. T. Shih, C. C. Chen, Y. L. Lee, and P. L. Kuo, Thin Solid Films 519 (16), 5552 (2011).
3Renewable Energy Consumption and Electricity Preliminary Statistics 2008 Energy Information Administration.
4M. Z. Jacobson, Energy & Environmental Science 2 (2), 148 (2009).
5Vasilis M. Fthenakis, Renewable and Sustainable Energy Reviews 8 (4) (2004).
62012 HubPages Inc.
7Semiconductor Today 2008 Juno Publishing and Media Solutions Ltd.
8The Encyclopedia of Alternative Energy and Sustainable Living.
9O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. B. Gao, A. J. Nozik, and M. C. Beard, Science 334 (6062), 1530 (2011).
10P. V. Kamat, Accounts of Chemical Research (2012).
11J. Holsinger, (Solar scientist, March 7, 2012).
12P. Politzer, J. S. Murray, and T. Clark, Phys. Chem. Chem. Phys. 12 (28), 7748 (2010).
13L. J. Meng, A. F. Ma, P. L. Ying, Z. C. Feng, and C. Li, Journal of Nanoscience and Nanotechnology 11 (2), 929 (2011).
14M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, and F. M. Wang, Journal of the American Chemical Society 126 (45), 14943 (2004).
15N. Papageorgiou, C. Barbé, and M. Grätzel, The Journal of Physical Chemistry B 102 (21), 4156 (1998).
16M. M. Gómez, J. Lu, E. Olsson, A. Hagfeldt, and C. G. Granqvist, Solar Energy Materials and Solar Cells 64 (4), 385 (2000).
17A. Kay and M. Grätzel, Chemistry of Materials 14 (7), 2930 (2002).
18J.-T. Jiu, S. Isoda, F.-M. Wang, and M. Adachi, The Journal of Physical Chemistry B 110 (5), 2087 (2006).
19G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, Advanced Materials 20 (1), 168 (2008).
20LTD ShenYe(Ningbo) Optoelectronic Technology Co.
21A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Materials Today 10 (11), 28 (2007).
22L. Kazmerski, (National Renewable Energy Laboratory (NREL)).
23U. Diebold, Surface Science Reports 48 (5–8), 53 (2003).
24A. A. Akl, H. Kamal, and K. Abdel-Hady, Applied Surface Science 252 (24), 8651 (2006).
25K. L. Siefering and G. L. Griffin, Journal of the Electrochemical Society 137 (4), 1206 (1990).
26Y. Sawada and Y. Taga, Thin Solid Films 116 (1–3), L55 (1984).
27B. Liu and E. S. Aydil, Journal of the American Chemical Society 131 (11), 3985 (2009).
28A. Nishimura, N. Komatsu, G. Mitsui, M. Hirota, and E. Hu, Catalysis Today 148 (3–4), 341 (2009).
29J.-M. Wu, H. C. Shih, and W.-T. Wu, Chemical Physics Letters 413 (4–6), 490 (2005).
30J.-B. Chen, C.-W. Wang, B.-H. Ma, Y. Li, J. Wang, R.-S. Guo, and W.-M. Liu, Thin Solid Films 517 (15), 4390 (2009).
31C. W. Wang, J. B. Chen, L. Q. Wang, Y. M. Kang, D. S. Li, and F. Zhou, Thin Solid Films 520 (15), 5036 (2012).
32X. H. Wang, J. G. Li, H. Kamiyama, and T. Ishigaki, Thin Solid Films 506–507 (0), 278 (2006).
33R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293 (5528), 269 (2001).
34J. C. Sagas, D. A. Duarte, and S. F. Fissmer, Vacuum 85 (11), 1042 (2011).
35M. Barbic, J. J. Mock, D. R. Smith, and S. Schultz, Journal of Applied Physics 91 (11), 9341 (2002).
36N. Beermann, L. Vayssieres, S. E. Lindquist, and A. Hagfeldt, Journal of the Electrochemical Society 147 (7), 2456 (2000).
37M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292 (5523), 1897 (2001).
38Y. Kang and D. Kim, Solar Energy Materials and Solar Cells 90 (2), 166 (2006).
39Y. Q. Liang, C. G. Zhen, D. C. Zou, and D. S. Xu, Journal of the American Chemical Society 126 (50), 16338 (2004).
40C. L. Liao, M. T. Wu, J. H. Yen, I. C. Leu, and K. Z. Fung, Journal of Alloys and Compounds 414 (1-2), 302 (2006).
41H. M. Luo, D. H. Wang, J. B. He, and Y. F. Lu, Journal of Physical Chemistry B 109 (5), 1919 (2005).
42C. R. Martin, Science 266 (5193), 1961 (1994).
43H. J. Zheng, J. H. Zhong, W. Wang, Y. F. Zheng, and C. N. Ma, Thin Solid Films 516 (15), 4983 (2008).
44B. O'Regan and M. Gratzel, Nature 353 (6346), 737 (1991).
45M. S. Dresselhaus, Y. M. Lin, O. Rabin, A. Jorio, A. G. Souza Filho, M. A. Pimenta, R. Saito, G. Samsonidze, and G. Dresselhaus, Materials Science and Engineering: C 23 (1–2), 129 (2003).
46H. Alouach and G. J. Mankey, Applied Physics Letters 86 (12) (2005).
47A. B. D. Cassie and S. Baxter, Transactions of the Faraday Society 40, 546 (1944).
48C. C. Chang and C. S. Chang, Solid State Communications 135 (11-12), 765 (2005).
49C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, Nanotechnology 17 (5), 1339 (2006).
50B. Dick, M. J. Brett, and T. Smy, Journal of Vacuum Science & Technology B 21 (6), 2569 (2003).
51J. G. Fan, X. J. Tang, and Y. P. Zhao, Nanotechnology 15 (5), 501 (2004).
52M. M. Hawkeye and M. J. Brett, Journal of Vacuum Science & Technology A 25 (5), 1317 (2007).
53R. W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, and P. Groning, Applied Surface Science 143 (1-4), 301 (1999).
54M. O. Jensen and M. J. Brett, Ieee Transactions on Nanotechnology 4 (2), 269 (2005).
55G. K. Kannarpady, K. R. Khedir, H. Ishihara, J. Woo, O. D. Shin, S. Trigwell, C. Ryerson, and A. S. Biris, Acs Applied Materials & Interfaces 3 (7), 2332 (2011).
56M. M. Gomez, N. Beermann, J. Lu, E. Olsson, A. Hagfeldt, G. A. Niklasson, and C. G. Granqvist, Solar Energy Materials and Solar Cells 76 (1), 37 (2003).
57J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, Journal of Physical Chemistry B 110 (5), 2087 (2006).
58S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Advanced Materials 20 (1), 54 (2008).
59S. H. Kang, J. W. Lim, H. S. Kim, J. Y. Kim, Y. H. Chung, and Y. E. Sung, Chemistry of Materials 21 (13), 2777 (2009).
60D. A. Duarte, M. Massi, A. S. D. Sobrinho, H. S. Maciel, K. Grigorov, and L. C. Fontana, European Physical Journal-Applied Physics 49 (1) (2010).
61L. C. Fontana and J. L. R. Muzart, Surface & Coatings Technology 114 (1), 7 (1999).
62M. Cevro and G. Carter, Journal of Physics D-Applied Physics 28 (9), 1962 (1995).
63W. X. Cheng, A. L. Ding, P. S. Qiu, X. Y. He, and X. S. H. Zheng, Applied Surface Science 214 (1-4), 136 (2003).
64M. Schneider and A. Baiker, Journal of Materials Chemistry 2 (6), 587 (1992).
65K. Yanagisawa and J. Ovenstone, The Journal of Physical Chemistry B 103 (37), 7781 (1999).
66W. Thongsuwan, T. Kumpika, and P. Singjai, Current Applied Physics 8 (5), 563 (2008).
67E. Figgemeier, W. Kylberg, E. Constable, M. Scarisoreanu, R. Alexandrescu, I. Morjan, I. Soare, R. Birjega, E. Popovici, C. Fleaca, L. Gavrila-Florescu, and G. Prodan, Applied Surface Science 254 (4), 1037 (2007).
68T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, S. Kano, N. Aya, S. Sasaki, and H. Shimura, Journal of Nanoparticle Research 3 (2), 185 (2001).
69A. R. Rao and V. Dutta, Solar Energy Materials and Solar Cells 91 (12), 1075 (2007).
70Y. J. Sun, A. Z. Li, M. Qi, L. Y. Zhang, and X. Yao, Materials Science and Engineering B-Solid State Materials for Advanced Technology 86 (3), 185 (2001).
71J. G. Li, M. Ikeda, R. Ye, Y. Moriyoshi, and T. Ishigaki, Journal of Physics D: Applied Physics 40 (8), 2348 (2007).
72L. Dreesen, J.-F. Colomer, H. Limage, A. Giguère, and S. Lucas, Thin Solid Films 518 (1), 112 (2009).
73J. A. Thornton, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 4 (6), 3059 (1986).
74M. T. Chen and J. M. Ting, Thin Solid Films 494 (1-2), 250 (2006).
75J. H. Park, H. K. Park, J. Jeong, W. Kim, B. K. Min, and Y. R. Do, Journal of the Electrochemical Society 158 (5), K131 (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊