跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 14:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳伯濤
研究生(外文):Bo-TaoChen
論文名稱:氧化鉭電阻式記憶體之多重阻態轉換特性
論文名稱(外文):Transition between Multilevel Resistance States in TaOx-based Resistance Memory
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):Jen-Sue Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:電阻式記憶體多重阻態氧化鉭
外文關鍵詞:Resistance MemoryMultilevel Resistance StatesTaOx
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用金屬鉭(Ta)靶進行反應性射頻磁控濺鍍製備氧化鉭(TaOx)薄膜於鉑(Pt)下電極上,並於TaOx主動層上沉積鉭(Ta)作為上電極,而對照組為沉積Ta前先以氧電漿處理TaOx薄膜表面進而得到不同的界面TaOo,並且另一參數為增加主動層厚度進而得到較厚的TaOT,藉由探討Ta/TaOx/Pt、Ta/TaOo/TaOx/Pt與Ta/TaOT/Pt電阻式記憶體元件之材料分析與電性表現,以期能了解氧化鉭系統(TaOx-based)的電阻式記憶體系統之阻態轉換機制。
在材料分析及元件電性量測方面,本實驗利用穿透式電子顯微鏡(TEM)分析TaOx-based薄膜的厚度與結晶程度;利用X光光電子能譜儀(XPS),分析主動層內部的TaOx鍵結型態;最後利用精準半導體參數分析儀(Agilent 4156C)與脈衝、函數、任意波形、雜訊產生器(Agilent 81150A)及示波器(Agilent DSO6102A)系統進行電阻式記憶體元件電性量測分析。
材料分析結果可知,TaOx主動層為非晶態結構,同時主動層靠近上電極界面之區域其缺陷較多,並且發現於整層主動層中同時存在金屬Ta與Ta+5之鍵結型態。
電性的分析結果可知TaOx-based的電阻式記憶體元件由電阻大到小可分為第0阻態(state 0 (~108Ω))、第1阻態(state 1 (~105Ω))、第2阻態(state 2 (~104Ω))與第3阻態(state 3 (~102Ω)),其中state 1、state 2與state 3可以任意相互轉換,但state 0與其他三個阻態只能進行有限相互轉換。
若探討外部施予元件改變因素,我們發現無法單獨討論電壓(V)、電流(I)與功率(P)對元件造成的影響,而是這幾種參數皆會造成互相影響,由數據來看,元件於set process受電流影響較大,相對而言,元件於reset process受電壓影響較大。同時,我們發現當元件在set process及reset process中,於state 1、state 2與state 3三種阻態間的任意變換也是一漸進式的改變過程;相對而言當元件在set process中,state 0轉換至state 3時有一劇烈的電壓電流變化;並且於reset process中,電壓接近Vs值時,電流值有較劇烈的變化。
簡而言之,元件阻態轉換行為的主因是由氧離子克服某一能障後,進行擴散行為並留下由氧空缺組成的導電路徑所造成。當元件處於state 0時,因主動層內部缺陷較少,故需要較大之電壓才能進行氧離子擴散行為,並產生更多的氧空缺,因此會有一較劇變的轉換行為;然而於state 1、state 2與state 3三種阻態間的任意變換為少量的氧離子擴散行為,而無氧空缺的數量變化,所以會有一漸變的轉換行為。
In this research, we deposit TaOx film on Pt bottom electrode via reactive magnetron sputtering from Ta metal target, and Ta top electrode is deposited on the top of TaOx active layer. For the reference, before Ta top electrode deposition, we also fabricate oxygen plasma treated TaOo and thicker TaOx, denoted as TaOT. Through material analysis and electrical characteristics of Ta/TaOx/Pt, Ta/TaOo/TaOx/Pt and Ta/TaOT/Pt resistive memory devices, we intend to understand the resistive switching mechanism in TaOx-based resistance memory system.
Regarding to material characteristics and the electrical properties, TEM is used to investigate the thickness and crystallinity of TaOx films. Chemical state in TaOx active layer is observed with XPS. Finally, for electrical measurement, we use precision semiconductor parameter analyzer (agilent 4156C) and pulse function arbitrary noise generator (Agilent 81150A) and oscilloscopes (Agilent DSO6102A ) system to characterize the resistive memory devices.
From the results of TEM and XPS, amorphous TaOx active layer is observed and the defects tend to locate near the top electrode with coexisting chemical states of Ta and Ta+5.
According to electrical measurement, state 0 has the largest resistance, state1 has the second largest resistance, followed by state 2 and the smallest state 3. Among these states, it is arbitrary changeable between state 1, state 2 and state 3. However, the switching between state 0 and other three states is limited.
If we take externally applied factors into consideration, it is not adequate take the effect of voltage, current or power on the device independently. These factors correlate with each other instead. From the results, the set process is dominated by current; however, reset process is dominated by voltage. Meanwhile, in set and reset process, we find a gradual change in arbitrary switching between three states of state1, 2 and 3. On the other hand, we observe an abrupt current and voltage change when switching from state 0 to state3 during set process. When the voltage is close to Vs in reset process, an abrupt current change is observed.
When an oxygen ion overcomes the energy barrier and starts to diffuse, the left oxygen vacancies form a conducting path, which results in resistive switching behavior. When the device lies in state 0, because of less defects inside, a large voltage is need to prompt the diffusion behavior of oxygen ions. And it will produce more oxygen vacancies. Therefore, an abrupt switching behavior is observed. The arbitrary switching between state 1, 2 and 3 depends only on the diffusion behaviors of less oxygen ions. And there no number of oxygen vacancies change. Thus, a gradual switching behavior is observed.
第1章 緒論 1
1-1 前言 1
1-2 研究目的及動機 4
第2章 理論基礎 5
2-1 新穎性記憶體簡介 5
2-2 電阻轉換機制 8
2-3 氧化鉭於電阻式記憶體之研究 12
2-4 電阻式記憶體於電性量測之特徵 15
2-4-1 電流-電壓特徵曲線 15
2-4-2 多重阻態量測方式 17
第3章 實驗方法與步驟 19
3-1 實驗材料 19
3-1-1 基板材料(Substrate) 19
3-1-2 濺鍍靶材(Target) 19
3-1-3 實驗使用氣氛(Gas Ambient) 20
3-1-4 實驗相關藥品與耗材 20
3-2 實驗設備 21
3-2-1 薄膜濺鍍系統(Sputter System) 21
3-2-2 乾式熱氧化系統(Dry Oxidation System) 22
3-3 實驗流程 23
3-3-1 基板製備 23
3-3-2 氧化鉭電阻式記憶體元件製備 25
3-4 分析儀器 27
3-4-1 表面粗度儀(α-step) 27
3-4-2 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 28
3-4-3穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 29
3-4-4 精密半導體參數分析儀(Precision Semiconductor Parameter Analyzer) 30
3-4-5 脈衝、函數、任意波形、雜訊產生器與示波器 (Pulse Function Arbitrary Noise Generator and Oscilloscopes) 31
第4章 結果與討論 33
4-1元件基本阻態轉換性質 36
4-1-1 Ta/TaOx/Pt電阻式記憶體元件之電流-電壓特徵曲線 37
4-1-2 Ta/TaOx/Pt電阻式記憶體元件之記憶阻態穩定保持時間(Retention) 41
4-1-3 Ta/TaOo/TaOx/Pt電阻式記憶體元件之電流-電壓特徵曲線 43
4-1-4 Ta/TaOo/TaOx/Pt電阻式記憶體元件之記憶阻態穩定保持時間(Retention) 46
4-1-5 Ta/TaOx/Pt電阻式記憶體元件與Ta/TaOo/TaOx/Pt電阻式記憶體元件之比較 48
4-2 任意與有限的多重阻態之轉換行為 50
4-2-1 Ta/TaOx/Pt電阻式記憶體元件的任意與有限之阻態轉換行為 51
4-2-2於double VS mode下,Ta/TaOx/Pt電阻式記憶體元件之阻態轉換行為 65
4-2-3於dual-mode下,Ta/TaOx/Pt電阻式記憶體元件之阻態轉換行為 74
4-2-4 Ta/TaOx/Pt、Ta/TaOo/TaOx/Pt與Ta/TaOT/Pt之電阻式記憶體元件的阻態轉換行為比較 79
4-3 阻態轉換速度與阻態轉換可運作次數 90
4-3-1 Ta/TaOx/Pt電阻式記憶體元件由state 0轉換至state 3之阻態轉換速度 91
4-3-2 Ta/TaOx/Pt電阻式記憶體元件由state 1轉換至state 3之阻態轉換速度 95
4-3-3 當Ta/TaOx/Pt電阻式記憶體元件處於state 0或state 1之阻態轉換速度比較 101
4-3-4 Ta/TaOx/Pt電阻式記憶體元件之阻態轉換可運作次數(Endurance) 105
4-4 轉換機制探討 108
第5章 結論 119
第6章 參考文獻 123
1. J. Hutchby, ITRS Winter Public Conference Presentations - Emerging Research Devices, The International Technology Roadmap for Semiconductors (2011).
2. M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U. I. Chung, I.-K. Yoo, and K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nature materials, 10, 625 (2011).
3. J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, High switching endurance in TaOx memristive devices, Applied Physics Letters, 97, 232102 (2010).
4. F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor, Advanced Materials, 23, 5633 (2011).
5. M. Fitsilis, Y. Mustafa, and R. Waser, Scaling the Ferroelectric Field Effect Transistor, Integrated Ferroelectrics, 70, 29 (2005).
6. H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors, Current Applied Physics, 9, S2 (2009).
7. P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Ferroelectric Schottky Diode, Physical Review Letters, 73, 2107 (1994).
8. H. Kohlstedt, N. A. Pertsev, J. Rodríguez Contreras, and R. Waser, Theoretical current-voltage characteristics of ferroelectric tunnel junctions, Physical Review B, 72, 125341 (2005).
9. E. M. Bourim, S. Park, X. Liu, K. P. Biju, H. Hwang, and A. Ignatiev, Ferroelectric Polarization Effect on Al-Nb Codoped Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3 Heterostructure Resistive Memory, Electrochemical and Solid-State Letters, 14, H225 (2011).
10. E. J. Ng, J. B. W. Soon, N. Singh, N. Shen, V. X. H. Leong, T. Myint, V. Pott, and J. M. Tsai, High density vertical silicon NEM switches with CMOS-compatible fabrication, Electronics Letters, 47, 759 (2011).
11. J. Andzane, N. Petkov, A. I. Livshits, J. J. Boland, J. D. Holmes, and D. Erts, Two-Terminal Nanoelectromechanical Devices Based on Germanium Nanowires, Nano Letters, 9, 1824 (2009).
12. L. Kwangseok and C. Woo Young, Nanoelectromechanical Memory Cell (T Cell) for Low-Cost Embedded Nonvolatile Memory Applications, Electron Devices, IEEE Transactions on, 58, 1264 (2011).
13. O. Loh, X. Wei, C. Ke, J. Sullivan, and H. D. Espinosa, Robust Carbon-Nanotube-Based Nano-electromechanical Devices: Understanding and Eliminating Prevalent Failure Modes Using Alternative Electrode Materials, Small, 7, 79 (2011).
14. D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions, Journal of Applied Physics, 106, 083702 (2009).
15. K.-H. Xue, C. A. P. de Araujo, J. Celinska, and C. McWilliams, A non-filamentary model for unipolar switching transition metal oxide resistance random access memories, Journal of Applied Physics, 109, 091602 (2011).
16. J. Celinska, C. McWilliams, C. P. de Araujo, and K.-H. Xue, Material and process optimization of correlated electron random access memories, Journal of Applied Physics, 109, 091603 (2011).
17. J. C. Scott and L. D. Bozano, Nonvolatile Memory Elements Based on Organic Materials, Advanced Materials, 19, 1452 (2007).
18. P. Heremans, G. H. Gelinck, R. Müller, K.-J. Baeg, D.-Y. Kim, and Y.-Y. Noh, Polymer and Organic Nonvolatile Memory Devices, Chemistry of Materials, 23, 341 (2010).
19. H. Song, M. A. Reed, and T. Lee, Single Molecule Electronic Devices, Advanced Materials, 23, 1583 (2011).
20. S. P. Cummings, J. Savchenko, and T. Ren, Functionalization of flat Si surfaces with inorganic compounds—Towards molecular CMOS hybrid devices, Coordination Chemistry Reviews, 255, 1587 (2011).
21. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, 21, 2632 (2009).
22. H. Akinaga and H. Shima, Resistive Random Access Memory (ReRAM) Based on Metal Oxides, Proceedings of the IEEE, 98, 2237 (2010).
23. V. Ilia, W. Rainer, R. J. John, and N. K. Michael, Electrochemical metallization memories—fundamentals, applications, prospects, Nanotechnology, 22, 254003 (2011).
24. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory, Nature nanotechnology, 5, 148 (2010).
25. S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim, D. W. Kim, and C. U. Jung, Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors, Applied Physics Letters, 92, 183507 (2008).
26. N. Banno, T. Sakamoto, N. Iguchi, M. Matsumoto, H. Imai, T. Ichihashi, S. Fujieda, K. Tanaka, S. Watanabe, S. Yamaguchi, T. Hasegawa, and M. Aono, Structural characterization of amorphous Ta2O5 and SiO2-Ta2O5 used as solid electrolyte for nonvolatile switches, Applied Physics Letters, 97, 113507 (2010).
27. J. H. Hur, M.-J. Lee, C. B. Lee, Y.-B. Kim, and C.-J. Kim, Modeling for bipolar resistive memory switching in transition-metal oxides, Physical Review B, 82, 155321 (2010).
28. C. B. Lee, D. S. Lee, A. Benayad, S. R. Lee, M. Chang, M. J. Lee, J. Hur, Y. B. Kim, C. J. Kim, and U. I. Chung, Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching, Electron Device Letters, IEEE, 32, 399 (2011).
29. H. K. Yoo, S. B. Lee, J. S. Lee, S. H. Chang, M. J. Yoon, Y. S. Kim, B. S. Kang, M. J. Lee, C. J. Kim, B. Kahng, and T. W. Noh, Conversion from unipolar to bipolar resistance switching by inserting Ta2O5 layer in Pt/TaOx/Pt cells, Applied Physics Letters, 98, 183507 (2011).
30. J. P. Strachan, G. Medeiros-Ribeiro, J. J. Yang, M.-X. Zhang, F. Miao, I. Goldfarb, M. Holt, V. Rose, and R. S. Williams, Spectromicroscopy of tantalum oxide memristors, Applied Physics Letters, 98, 242114 (2011).
31. F. Miao, W. Yi, I. Goldfarb, J. J. Yang, M.-X. Zhang, M. D. Pickett, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, Continuous Electrical Tuning of the Chemical Composition of TaOx-Based Memristors, ACS nano, 6, 2312 (2012).
32. H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms, Applied Physics Letters, 96, 192113 (2010).
33. S. Kim, K. P. Biju, M. Jo, S. Jung, J. Park, J. Lee, W. Lee, J. Shin, S. Park, and H. Hwang, Effect of Scaling WOx-Based RRAMs on Their Resistive Switching Characteristics, Electron Device Letters, IEEE, 32, 671 (2011).
34. W. Yan, L. Qi, L. Shibing, W. Wei, W. Qin, Z. Manhong, Z. Sen, L. Yingtao, Z. Qingyun, Y. Jianhong, and L. Ming, Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications, Nanotechnology, 21, 045202 (2010).
35. S.-C. Chen, T.-C. Chang, S.-Y. Chen, H.-W. Li, Y.-T. Tsai, C.-W. Chen, S. M. Sze, F.-S. Yeh, and Y.-H. Tai, Carrier Transport and Multilevel Switching Mechanism for Chromium Oxide Resistive Random-Access Memory, Electrochemical and Solid-State Letters, 14, H103 (2011).
36. C.-H. Cheng, F.-S. Yeh, and A. Chin, Low-Power High-Performance Non-Volatile Memory on a Flexible Substrate with Excellent Endurance, Advanced Materials, 23, 902 (2011).
37. H. Y. Lee, Y. S. Chen, P. S. Chen, T. Y. Wu, F. Chen, C. C. Wang, P. J. Tzeng, M. J. Tsai, and C. Lien, Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap, Electron Device Letters, IEEE, 31, 44 (2010).
38. B. Gao, L. Liu, X. Liu, and J. Kang, Resistive switching characteristics in HfOx layer by using current sweep mode, Microelectronic Engineering, 94, 14 (2012).
39. Y.-F. Chang, T.-C. Chang, and C.-Y. Chang, Investigation statistics of bipolar multilevel memristive mechanism and characterizations in a thin FeOx transition layer of TiN/SiO2/FeOx/Fe structure, Journal of Applied Physics, 110, 053703 (2011).
40. M. A. Lampert, Double Injection in Insulators, Physical Review, 125, 126 (1962).
41. M. D. Pickett, J. Borghetti, J. J. Yang, G. Medeiros-Ribeiro, and R. S. Williams, Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal-Oxide-Metal System, Advanced Materials, 23, 1730 (2011).
42. M. Boucherit, A. Soltani, E. Monroy, M. Rousseau, D. Deresmes, M. Berthe, C. Durand, and J. C. De Jaeger, Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes, Applied Physics Letters, 99, 182109 (2011).
43. C. T. Antonio, S. John Paul, M.-R. Gilberto, and R. S. Williams, Sub-nanosecond switching of a tantalum oxide memristor, Nanotechnology, 22, 485203 (2011).
44. Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX/TiN Structure, Electron Device Letters, IEEE, 32, 545 (2011).
45. H. Demiryont, J. R. Sites, and K. Geib, Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering, Applied optics, 24, 490 (1985).
46. O. Kerrec, D. Devilliers, H. Groult, and P. Marcus, Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS, Materials Science and Engineering: B, 55, 134 (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊