|
[1]D. Dowson, History of tribology: Professional Engineering Publishing, 1998. [2]G. Amontons, De la résistance causée dans les machines, Mem. Acad. R. A, pp. 275-282, 1699. [3]F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids: Clarendon Press, 2001. [4]M. H. Müser, Rigorous Field-Theoretical Approach to the Contact Mechanics of Rough Elastic Solids, Physical Review Letters, vol. 100, p. 055504, 2008. [5]B. N. J. Persson, Theory of rubber friction and contact mechanics, The Journal of Chemical Physics, vol. 115, pp. 3840-3861, 2001. [6]J. Greenwood and J. Williamson, Contact of nominally flat surfaces, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 295, pp. 300-319, 1966. [7]Y. Mo, K. T. Turner, and I. Szlufarska, Friction laws at the nanoscale, Nature, vol. 457, pp. 1116-1119, 2009. [8]A. G. Khurshudov, K. Kato, and H. Koide, Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM, Tribology Letters, vol. 2, pp. 345-354, 1996. [9]K.-H. Chung and D.-E. Kim, Wear characteristics of diamond-coated atomic force microscope probe, Ultramicroscopy, vol. 108, pp. 1-10, 2007. [10]D. Marchetto, A. Rota, L. Calabri, G. C. Gazzadi, C. Menozzi, and S. Valeri, AFM investigation of tribological properties of nano-patterned silicon surface, Wear, vol. 265, pp. 577-582, 2008. [11]B. Haochih Liu and C.-H. Chen, Direct deformation study of AFM probe tips modified by hydrophobic alkylsilane self-assembled monolayers, Ultramicroscopy, vol. 111, pp. 1124-1130, 2011. [12]J. Yang and K. Komvopoulos, A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction, Journal of Tribology, vol. 127, pp. 513-521, 2005. [13]I. H. Sung and D. E. Kim, Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol self-assembled monolayers, Applied Physics A: Materials Science & Processing, vol. 81, pp. 109-114, 2005. [14]L. Verlet, Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol. 159, pp. 98-103, 1967. [15]L. Verlet, Computer Experiments on Classical Fluids. II. Equilibrium Correlation Functions, Physical Review, vol. 165, pp. 201-214, 1968. [16]M. Amini, J. W. Eastwood, and R. W. Hockney, Time integration in particle models, Computer Physics Communications, vol. 44, pp. 83-93, 1987. [17]O. Buneman, Time-reversible difference procedures, Journal of Computational Physics, vol. 1, pp. 517-535, 1967. [18]R. W. Hockney, POTENTIAL CALCULATION AND SOME APPLICATIONS, Journal Name: Methods Comput. Phys. 9: 135-211(1970).; Other Information: Orig. Receipt Date: 31-DEC-70, p. Medium: X, 1970. [19]H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol. 81, p. 3684, 1984. [20]A. J. Stone, The theory of intermolecular forces: Clarendon Press, 1996. [21]R. J. Sadus, Molecular Simulation of Fluids: Elsevier, 2002. [22]P. O. J. Scherer, Computational Physics: Simulation of Classical and Quantum Systems: Springer, 2010. [23]J. Tersoff, New empirical model for the structural properties of silicon, Physical Review Letters, vol. 56, pp. 632-635, 1986. [24]J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Physical Review B, vol. 38, pp. 9902-9905, 1988. [25]J. Tersoff, New empirical approach for the structure and energy of covalent systems, Physical Review B, vol. 37, p. 6991, 1988. [26]J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, vol. 39, pp. 5566-5568, 1989. [27]N. Roberts and R. J. Needs, Total energy calculations of dimer reconstructions on the silicon (001) surface, Surface Science, vol. 236, pp. 112-121, 1990.
|