跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊秉諭
研究生(外文):Ping-YuChuang
論文名稱:以分子動力學模擬探討矽探針之奈米磨耗行為
論文名稱(外文):Nano-wear Behavior of Silicon Probes by Molecular Dynamics Simulation
指導教授:許文東許文東引用關係
指導教授(外文):Wen-Dung Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:奈米摩擦奈米磨耗分子動力學模擬掃描探針
外文關鍵詞:NanotribologyNanowearMolecular dynamics simulationScanning Probe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
隨著掃描探針成像技術對於解析度以及精確度的要求提高,探針磨耗的議題漸漸受到關注。本研究分別針對刮痕速率、基板表面形貌、正向力、以及鍍層原子的主題進行分析及討論。
實驗中進行的三種刮痕速率測試結果顯示就摩擦力增加率本身而言,三種速率並無太大的分別,而主要影響摩擦與磨耗的因素為過程中的正向力。兩種基板表面形貌在探針原子磨耗現象上沒有太大的區別。正向力測試結果顯示相對大之正向力可造成較大的摩擦力與原子損耗率,然而此趨勢並不明顯。從實驗中鍍層的刮痕測試可發現,三種鍍層對於摩擦力與磨耗率皆有顯著之降低成效,而過強的鍍層原子鍵結則會導致摩擦力的增加。
While greater accuracy and finer resolution of microscopy techniques are imperatively needed, massive attention has been drawn to probe integrity studies. Silicon probe is chosen to be studied in this work. Various scratch tests are performed by molecular dynamics simulation. In this work, the effects of scratch speed, substrate surface pattern, normal force, and coating to friction and wear are discussed.
Friction and wear results of varied scratch speeds were found similar, only that the fluctuation in normal force was found affecting friction forces. Wear behaviors of two substrate surface patterns were almost the same, implying that difference of surface patterns was not sufficient to cause apparent behaviors. Two sets of normal forces were applied in scratch tests, indicating relatively heavier load can give rise to slightly larger friction force and wear rate. Three types of protective coatings were observed effective in reducing friction force and wear rate; however, extremely strong bonds of coating atoms can also cause excessive friction force.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第1章 緒論 1
第2章 文獻回顧 2
第3章 實驗方法與流程 16
3.1 實驗流程 16
3.2 分子動力學模擬 17
3.2.1 簡介 17
3.2.2 初始條件設定 17
3.2.2.1 速度修正 18
3.2.2.2 溫度修正 18
3.2.3 運動方程式 19
3.2.4 系綜 20
3.2.5 週期性邊界條件 21
3.2.6 勢能函數 21
3.2.6.1 Lennard-Jones勢能 22
3.2.6.2 Tersoff勢能 23
3.2.7 計算效率優化 24
3.3 物理模型 30
3.3.1 探針模型 30
3.3.2 純矽基板模型 30
3.3.2.1 無表面重組基板 30
3.3.2.2 表面重組基板 31
3.3.3 鍍膜基板模型 31
3.4 實驗設計及參數 37
3.4.1 壓痕實驗 37
3.4.2 刮痕實驗 37
3.4.3 Tersoff勢能參數 38
3.4.4 Lennard-Jones勢能參數 38
3.5 實驗分析 43
3.5.1 摩擦力 43
3.5.2 正向力 43
3.5.3 摩擦係數 43
3.5.4 原子殘餘率 43
第4章 結果與討論 47
4.1 實驗範例說明 47
4.2 純Si系統刮痕速率對磨耗之影響 53
4.3 純Si系統表面重組基板對磨耗之影響 56
4.4 純Si系統正向力對磨耗之影響 64
4.5 不同鍍層粒子對磨耗之影響 69
第5章 結論及未來展望 78
5.1 結論 78
5.2 未來展望 79
第6章 參考文獻 80
[1]D. Dowson, History of tribology: Professional Engineering Publishing, 1998.
[2]G. Amontons, De la résistance causée dans les machines, Mem. Acad. R. A, pp. 275-282, 1699.
[3]F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids: Clarendon Press, 2001.
[4]M. H. Müser, Rigorous Field-Theoretical Approach to the Contact Mechanics of Rough Elastic Solids, Physical Review Letters, vol. 100, p. 055504, 2008.
[5]B. N. J. Persson, Theory of rubber friction and contact mechanics, The Journal of Chemical Physics, vol. 115, pp. 3840-3861, 2001.
[6]J. Greenwood and J. Williamson, Contact of nominally flat surfaces, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 295, pp. 300-319, 1966.
[7]Y. Mo, K. T. Turner, and I. Szlufarska, Friction laws at the nanoscale, Nature, vol. 457, pp. 1116-1119, 2009.
[8]A. G. Khurshudov, K. Kato, and H. Koide, Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM, Tribology Letters, vol. 2, pp. 345-354, 1996.
[9]K.-H. Chung and D.-E. Kim, Wear characteristics of diamond-coated atomic force microscope probe, Ultramicroscopy, vol. 108, pp. 1-10, 2007.
[10]D. Marchetto, A. Rota, L. Calabri, G. C. Gazzadi, C. Menozzi, and S. Valeri, AFM investigation of tribological properties of nano-patterned silicon surface, Wear, vol. 265, pp. 577-582, 2008.
[11]B. Haochih Liu and C.-H. Chen, Direct deformation study of AFM probe tips modified by hydrophobic alkylsilane self-assembled monolayers, Ultramicroscopy, vol. 111, pp. 1124-1130, 2011.
[12]J. Yang and K. Komvopoulos, A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction, Journal of Tribology, vol. 127, pp. 513-521, 2005.
[13]I. H. Sung and D. E. Kim, Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol self-assembled monolayers, Applied Physics A: Materials Science & Processing, vol. 81, pp. 109-114, 2005.
[14]L. Verlet, Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol. 159, pp. 98-103, 1967.
[15]L. Verlet, Computer Experiments on Classical Fluids. II. Equilibrium Correlation Functions, Physical Review, vol. 165, pp. 201-214, 1968.
[16]M. Amini, J. W. Eastwood, and R. W. Hockney, Time integration in particle models, Computer Physics Communications, vol. 44, pp. 83-93, 1987.
[17]O. Buneman, Time-reversible difference procedures, Journal of Computational Physics, vol. 1, pp. 517-535, 1967.
[18]R. W. Hockney, POTENTIAL CALCULATION AND SOME APPLICATIONS, Journal Name: Methods Comput. Phys. 9: 135-211(1970).; Other Information: Orig. Receipt Date: 31-DEC-70, p. Medium: X, 1970.
[19]H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol. 81, p. 3684, 1984.
[20]A. J. Stone, The theory of intermolecular forces: Clarendon Press, 1996.
[21]R. J. Sadus, Molecular Simulation of Fluids: Elsevier, 2002.
[22]P. O. J. Scherer, Computational Physics: Simulation of Classical and Quantum Systems: Springer, 2010.
[23]J. Tersoff, New empirical model for the structural properties of silicon, Physical Review Letters, vol. 56, pp. 632-635, 1986.
[24]J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Physical Review B, vol. 38, pp. 9902-9905, 1988.
[25]J. Tersoff, New empirical approach for the structure and energy of covalent systems, Physical Review B, vol. 37, p. 6991, 1988.
[26]J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, vol. 39, pp. 5566-5568, 1989.
[27]N. Roberts and R. J. Needs, Total energy calculations of dimer reconstructions on the silicon (001) surface, Surface Science, vol. 236, pp. 112-121, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top