跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭瑋民
研究生(外文):Wei-MinHsiao
論文名稱:粉液比對磷酸鈣/硫酸鈣複合骨水泥性質之影響 (I)
論文名稱(外文):The liquid/powder ratio effect on properties of calcium phosphate/calcium composite bone cement (I)
指導教授:陳瑾惠朱建平朱建平引用關係
指導教授(外文):Jiin-Huey Chern LinJiin-Huey Chern Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:磷酸鈣硫酸鈣骨水泥
外文關鍵詞:calcium phosphatecalcium sulfatebone cement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
磷酸鈣骨水泥具有優良的生物相容性與適當的機械強度,並具有骨傳導性,但在人體內吸收速率相當慢使得骨細胞不易取代;而硫酸鈣骨水泥在體內溶解速率快,溶解的同時釋出鈣離子,鈣離子的釋出使得材料具有誘骨性,且硫酸鈣也具有良好的生物相容性;因此磷酸鈣和硫酸鈣混合後,利用硫酸鈣快速被吸收當作製造骨基質原料及產生孔洞效果的特性,有利於新生骨長入。
本實驗探討磷酸鈣骨水泥選用液粉比的高低對其注射性質的影響,並進行生物體外短時間及長時間的機械性質與其他物理性質之研究。對於CM1跟CM2提升液粉比皆能夠明顯改善其注射性質,即便在嚴刻環境30cm細長管的注射系統仍然能夠全部射出,並維持其良好之不崩解性質。且提高液粉比也可大幅增加孔隙率和溶解速率以利於骨細胞生長。最後測試其可應用之液粉比範圍之各項性質,以符合臨床上的需求。
Calcium phosphate cement has excellent biocompatibility and adequate mechanical properties. Also, it has good osteoconductivity but has slow resorption rate in the human body. Calcium sulfate has excellent biocompatibility and fast resorption rate in human body. When calcium sulfate dissolved, the calcium ions were released which provided osteoinductivity. The resorbed calcium sulfate can be used as materials of bone matrix. Upon degrading it also generates pores which makes the newly formed bone integrate into the implant along with the pores and contacts.
This research studies the effect of calcium phosphate bone cement liquid-powder ratio on injectability of the pastes. In vitro tests of both short and long term mechanical property tests and other physical properties tests were performed. Results show that CM1 and CM2 were able to improve the injectability of the paste. This formula can even be injected through 30 cm tubes and maintained form without disintegrating. Furthermore, increasing the liquid-powder ratio increases porosity and degradation rates, which helps cell growth and attachment. Finally, testing of applicable liquid-powder ratio in different material properties for clinical purposes was performed.
中文摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 IX
第一章 總序論 1
1-1 生醫材料的簡介 1
1-2 生醫材料的定義 1
1-3 生醫材料的分類 2
1-4 生醫陶瓷種類 8
1-5骨水泥的簡介 10
1-5-1 骨取代材的性質及製程要求 10
1-5-2 骨水泥的定義 12
1-5-3 理想骨水泥的要求 12
1-5-4骨水泥應用方式 13
1-5-5骨水泥的注射性 15
1-6常見臨床難題─骨水泥外漏引起栓塞(EMBOLISM) 16
1-7台灣生醫材料產業現況 17
第二章 文獻回顧 22
2-1 磷酸鈣簡介 22
2-1-1 磷酸鈣鹽類生醫材料的發展 22
2-1-2 磷酸鈣鹽類的性質簡介 23
2-1-3 鈣磷系骨水泥簡介 25
2-2 硫酸鈣簡介 30
2-3 骨水泥造成之栓塞案例 31
2-4 常見骨水泥注射性改善方法 34
2-6研究目的 38
第三章 實驗原理及步驟 39
3-1 實驗使用藥品 39
3-2 實驗步驟與分析方法 40
3-2-1 崩解性質的測試/ 41
3-2-2 抗壓試片製作與強度測試 42
3-2-3 工作與硬化時間測量 43
3-2-4 pH值的量測 44
3-2-5 X-Ray diffraction(XRD)分析 45
3-2-6 Scanning Electron Microscopy(SEM)表面觀察 46
3-2-7 孔隙度(Porosity)、重量損失測試 48
第四章 結果與討論 50
4-1 L/P RATIO 對崩解性之影響 50
4-2 L/P RATIO 對注射性之影響 54
4-3 L/P RATIO 對工作時間及硬化時間的影響 56
4-4 L/P RATIO對複合骨水泥浸泡SBF抗壓強度分析 58
4-5 L/P RATIO對複合骨水泥反應PH值變化的影響 60
4-6 L/P RATIO 對複合骨水泥浸泡SBF的重量損失率、孔隙率的影響 64
4-7 複合骨水泥初期XRD之分析 68
4-8 複合材長時間浸泡SBF的SEM微結構觀察 68
第五章 結論 78
參考文獻 79

(1)Albee F, Morrison H. Studies in bone growth. Annals of Surg 1920; 71: 32-38.
(2)Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth, 1988; 88: 184.
(3)Andries S. Coetzee, MMed (OLR). Regeneration of Bone in the Presence of Calcium Sulfate. Arch Otolaryngol. Vol 106, July 1980
(4)Block M.S, Kent T.N, Guerra. Implants in dentistry. W. B. Saunders Company, 1997
(5)Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000; 31: S-D37-47.
(6)Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004; 25[17] 3569–3582.
(7)Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
(8)Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004; 25 741–749.
(9)Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
(10)Brown WE, Chow LC., A new calcium phosphate setting cement. J Dent Res Abs 1983; 207: 62-672.
(11)Brown WE, Chow LC., Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
(12)Brown WE, Chow LC., Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
(13)Brown WE, Chow LC., Singular points in the chemistry of teeth. J Dent. Res 1975; 54:74.
(14)Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
(15)Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
(16)Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991; 99(10): 954-964.
(17)Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
(18)Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. Author manuscript; available in PMC 2009 August 5.
(19)Clemson Advisory Board for Biomaterials “Definition of the word biomaterial, The 6th annal international biomaterial symposium. April 1974:20-24.
(20)David F. Williams. On the nature of biomaterials. Biomaterials 30 (2009) 5897–5909
(21)Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994; 27:1037-1074.
(22)Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
(23)de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991; 99:943-953.
(24)Elena F. Burguera, Hockin H. K. Xu, Michael D. Weir. Injectable and
i.Rapid-Setting Calcium Phosphate Bone Cementwith Dicalcium Phosphate Dihydrate. J Biomed Mater Res Part B: Appl. Biomater 77B:126–134, 2006
(25)Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183
(26)Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements; J Dent Res 69(12):1852-1856, December, 1990.
(27)F. Monticelli*, H.J. Meyer, E. Tutsch-Bauer
i.Fatal pulmonary cement embolism following percutaneous
ii.vertebroplasty (PVP), Forensic Science International 149 (2005) 35–38
(28)Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972; 30:263-268.
(29)Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74:1487-1510.
(30)Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982; 8:131-140.
(31)Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
(32)Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976; 11:2027-35.
(33)Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977; 1:79-92.
(34)Jonck LM, Grobbelaar CJ. The biological compatibility of glass ionomer cement in joint replacement. Clin. Mater. , 1989; 4: 85-107.
(35)Juan Alcibar, Roberto Blanco,
i.Multiple Fatal Pulmonary Embolism During Polymethyl-Methacrylate Vertebroplasty With Successful Percutaneous Retrieval of a Large Cement Fragment, 22 November 2011
(36)K. ISHIKAWA , S. MATSUYA , Y. MIYAMOTO, K.KAWATE., Biocomposite, Comprehensive Structural Integrity volume 9, 2007
(37)Kokubo T. Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
(38)Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate keramik. Langenbecks Arch Chir 1976; 341:77-86.
(39)Lewis K. N, Thomas M. V, Puleo D. A. ; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006; 17: 531–537.
(40)Lewry A.J. and J. Williamsoon, The setting of gypsum plaster partIII the effect of additives and impurities. J of materials science. Vol 29, p6085~6090, 1994.
(41)Lijun Wang and George H. Nancollas. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108, 4628–4669
(42)Marc Bohnera, Gamal Baroudb. Injectability of calcium phosphate pastes. Biomaterials 26 (2005) 1553–1563
(43)Mark V. Thomas, David A. Pule. Calcium Sulfate: Properties and Clinical Applications. J Biomed Mater Res Part B: Appl Biomater 88B: 597–610, 2009
(44)Mi Hyoung Moon, Keon Hyun Jo, Hwan Wook Kim, Cardiac perforation caused by bone cement embolism , 15 November 2011
(45)Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
(46)Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361, 2001.
(47)M.P. Ginebra ⁎, T. Traykova, J.A. Planell. Calcium phosphate cements as bone drug delivery systems: A review, Journal of Controlled Release 113 (2006) 102–110
(48)Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
(49)Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61: 600–607, 2002.
(50)Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement. Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
(51)Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
(52)Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
(53)Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
(54)Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
(55)Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of ceramics 1977; 9:226-236.
(56)R Sivakumar. On the relevance and requirements of biomaterials.
i.Bull. Master. Sci., Vol. 22, No. 3, pp. 647-655
(57)Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952; 34A:638-647.
(58)Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Theme Medical Publishers, 1995.
(59)Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996; 222-223.
(60)Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974; 247:220-222.
(61)Russell Bert Farquhar, B.Sc., D.D.S.. Direct bonding comparing a polyacrylic acid and a phosphoric acid technique, American Journal of Orthodontics and Dentofacial Orthopedics. Volume90. Issue3. September 1986, Pages 187–194
(62)Sergey V. Dorozhkin. Calcium Orthophosphates as Bioceramics: State of the Art. J. Funct. Biomater. 2010, 1, 22-107
(63)Sergey V. Dorozhkin. Calcium orthophosphate cements for biomedical application. J Mater Sci (2008) 43:3028–3057
(64)Sergey V. Dorozhkin. Calcium orthophosphates. J Mater Sci (2007) 42:1061–1095
(65)Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
(66)Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993; 64:1-58.
(67)Song H.Y, Esfakur Rahman A.H.M., Lee B.T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid, J Mater Sci: Mater Med 20:935–941, 2009.
(68)S. Ramakrishna , Z.-M. Huang ., Biocomposite, Comprehensive Structural Integrity volume 9, 2007
(69)Takag i S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19 (1998) 1593Ð1599
(70)The Orthopedis Industry Annual Report: 2009-2010
(71)The U.S. Market for Medical Technology Opportunities and Challenges for Swiss Companies
(72)Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 1990; 104:820-832.
(73)Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
(74)WAN KHARTINI WAN KHODIR, ROSLINDA SHAMSUDIN, ABDUL RAZAK DAUD & YUSOF ABDULLAH. Injectable Hydroxyapatite -β -Tricalcium Phosphate –Calcium Sulphate Biocement. Sains Malaysiana . 34(2) (2005): 77-80
(75)Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production , US patent 6013591, 2000.
(76)汪建民, 材料分析, 中國材料科學學會, 1998
(77)宋信文, 陳松青(博士生) , 生醫材料簡介
(78)林文彬, 成骨細胞與破骨細胞的研究探討, 林園中醫診所台北市立聯合醫院中興院區
(79)林志隆, 高醫醫訊月刊第二十七卷第十期
(80)張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991
(81)梁智仁, “骨質疏鬆致骨折專治生物材料的研製與市場化. 京港學術交流第五十四期, 2002
(82)趙月秀, 生技/醫藥速報半月刊 第 119 期

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top