跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林盈汝
研究生(外文):Ying-RuLin
論文名稱:聚合物錯合溶液法製備氧化鋯鍍膜於不鏽鋼上之成長積層之研究
論文名稱(外文):ZrO2 Coating Using Polymer Complex Solution Method on Growing Integration Layer (GIL) Anodized Stainless Steel
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-Shyang Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:氧化鋯薄膜聚合物錯合溶液法成長積層動電位極化曲線不銹鋼
外文關鍵詞:zirconiathin filmPolymer complex solution (PCS)graded integration layer (GIL)Potentiodynamic polarization curvesstainless steel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
為增強不銹鋼表面之耐蝕、強度及耐磨耗,使不銹鋼能應用於醫學儀器、用具上,本研究是針對不銹鋼表面做鍍膜的改質,再以聚合物錯合溶液法製備摻雜氧化鈰的氧化鋯(ZrO2)前驅溶液,並以浸鍍法將此前驅溶液披覆於304不銹鋼基材上,乾燥後形成薄膜。為增加氧化鋯薄膜與基材的附著力,本研究在披覆氧化鋯鋯薄膜之前是先藉由電化學陽極處理法在不銹鋼表面形成一成長積層(Graded Integration Layer, GIL)的氧化物。
氧化鋯薄膜的微觀結構(相、形態和定量的原子組成)是利用多功能薄膜X射線繞射儀、掃描電子顯微鏡分析、電子能譜化學分析及紅外光光譜儀分析之。氧化鋯薄膜的耐蝕性質是以動電位極化曲線分析之;薄膜與基材的附著力是以刮痕測試分析之。
經低溫熱處理至300℃所形成的氧化鋯薄膜為非結晶相,並且是由聚乙稀醇(PVA)與鋯離子的錯合物所組成。試片經鍍上氧化鋯薄膜後會降低其粗糙度;不銹鋼經陽極處理後再浸鍍披覆氧化鋯薄膜的試片其粗糙度會大於未陽極處理者。經由刮痕測試分析結果可看出透過陽極處理在不銹鋼表面生成之成長積層確實可增加基材與薄膜的附著力。
在耐蝕性方面,由動電位極化曲線結果顯示,不銹鋼上鍍一層氧化鋯薄膜確實可增加其腐蝕電位及提升耐蝕性;不銹鋼經陽極處理過後再披覆氧化鋯薄膜雖會降低其腐蝕電位,代表腐蝕現象提早發生,但會提升其崩解電位,而增進其耐蝕性。

For using the stainless steel as medical instruments and applications, we have to enhance the properties of stainless steel: corrosion resistance, strength and wear resistance. This study is aimed at the modification of the coating for the stainless steel surface. Doping ceria in zirconia (ZrO2) precursor solution was prepared by polymer complex solution method, and coating this precursor solution on 304 stainless steel substrate to form thin film. In order to increase the adhesion of the film and substrate. First of all, this study using electrochemical anodic treatment on the stainless steel surface to form the Graded Integration Layer (GIL).
Microstructures of ZrO2 thin film (phase, morphology and quantitative atomic composition) were investigated by the multipurpose X-ray thin film diffractometer, scanning electron microscopy, electron spectroscopy for chemical analysis, and infrared spectrometers. The corrosion resistance of ZrO2 thin film were analyzed by Potentiodynamic polarization curves, and the adhesion of ZrO2 thin film were analyzed by scratch test.
The findings show that the zirconia thin film heat treated to 300 ℃was amorphous, and the zirconia thin film was composed by the polyethylene alcohol (PVA) with the zirconium ion complexes. Stainless steel specimens coated with zirconia thin film will reduce its roughness, and the roughness of the anodized stainless steel specimens would be greater than the untreated stainless steel specimens. Through the scratch test result, the graded Integration layer of anodized stainless steel indeed increase the adhesion of substrate and thin film .
In terms of corrosion resistance ,the potentiodynamic polarization curves show the stainless steel coated with zirconia thin film indeed increase the corrosion potential and corrosion resistance improvement. However, for the anodized stainless steel coated with zirconia thin film will decrease its corrosion potential, but increase the break down potential and enhance corrosion resistance.

摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1前言 1
1-2研究目的 2
第二章 相關文獻回顧與整理 3
2-1 氧化鋯的晶體結構與性質介紹 3
2-2溶膠-凝膠法之製程 8
2-2-1 聚合物錯合法In-situ polymerizable complex (IPC) 11
2-2-2 聚合物錯合溶液法Polymer-complex solution (PCS)之製程 14
2-3 前驅溶液鍍覆於基材上之方式 17
2-3-1 浸鍍法之原理 17
2-3-2凝膠膜之熱處理 22
2-4氧化鋯薄膜之製備技術 23
2-5 刮痕測試與薄膜附著力 27
2-6 不銹鋼之成長積層Growing Integration Layer( GIL ) 29
第三章 實驗方法與步驟 32
3-1前驅溶液原料及基板 32
3-1-1 試片前處理 32
3-1-2 試片陽極處理 33
3-2 實驗流程 34
3-2-1實驗流程圖 34
3-2-2氧化鋯前驅溶液的製備 35
3-2-3 氧化鋯薄膜成長及熱處理條件 35
3-3氧化鋯前驅溶液性質之量測 36
3-3-1黏度量測 36
3-3-2熱重/ 熱差分析 36
3-4薄膜性質之量測 36
3-4-1薄膜厚度之量測 36
3-4-2結晶相鑑定 37
3-4-3微觀結構觀察 37
3-4-4化學鍵結分析 37
3-4-5紅外光穿透率量測 38
3-4-6電化學動電位極化測試 38
3-4-7刮痕測試 40
第四章 結果與討論 42
4-1氧化鋯前驅溶液之性質 42
4-1-1 氧化鋯前驅溶液黏度之測試 42
4-1-2 氧化鋯前驅粉末的熱差-質差分析 44
4-2 氧化鋯薄膜的厚度 48
4-3氧化鋯薄膜性質分析 50
4-3-1氧化鋯薄膜之結晶相鍵定 50
4-3-2氧化鋯薄膜之微觀結構分析 53
4-3-3氧化鋯薄膜之化學鍵結分析 68
4-3-4氧化鋯薄膜之紅外光譜分析 73
4-3-5氧化鋯薄膜之電化學動電位極化測試 76
4-3-6氧化鋯薄膜之刮痕測試 88
第五章 結論 93
參考文獻 95
附錄 A 101
附錄 B 103
[1] I. Gurappa, Development of appropriate thickness ceramic coatings on 316 L stainless steel for biomedical applications, Surface and Coatings Technology 161 (1) (2002) 70-78.
[2] T.L.S.L. Wijesinghe, D.J. Blackwood, Characterisation of passive films on 300 series stainless steels, Applied Surface Science 253 (2) (2006) 1006-1009.
[3] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions, Corrosion Science 50 (6) (2008) 1796-1806.
[4] C. Valero Vidal, A. Igual Muñoz, Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids, Corrosion Science 50 (7) (2008) 1954-1961.
[5] R. Di Maggio, S. Rossi, L. Fedrizzi, P. Scardi, ZrO2-CeO2 films as protective coatings against dry and wet corrosion of metallic alloys, Surface and Coatings Technology 89 (3) (1997) 292-298.
[6] I. Espitia-Cabrera, H. Orozco-Hernández, R. Torres-Sánchez, M.E. Contreras-Garcı́a, P. Bartolo-Pérez, L. Martı́nez, Synthesis of nanostructured zirconia electrodeposited films on AISI 316L stainless steel and its behaviour in corrosion resistance assessment, Materials Letters 58 (1–2) (2004) 191-195.
[7] G.X. Shen, Y.C. Chen, C.J. Lin, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films 489 (1–2) (2005) 130-136.
[8] L. Thomé, A. Gentils, J. Jagielski, F. Garrido, T. Thomé, Radiation stability of ceramics: Test cases of zirconia and spinel, Vacuum 81 (10) (2007) 1264-1270.
[9] E. Nouri, M. Shahmiri, H.R. Rezaie, F. Talayian, Investigation of structural evolution and electrochemical behaviour of zirconia thin films on the 316L stainless steel substrate formed via sol-gel process, Surface & Coatings Technology 205 (21-22) (2011) 5109-5115.
[10] M. Atik, S.H. Messaddeq, F.P. Luna, M.A. Aegerter, Zirconia sol-gel coatings deposited on 304 and 316L stainless steel for chemical protection in acid media, Journal of Materials Science Letters 15 (23) (1996) 2051-2054.
[11] S. Nagarajan, N. Rajendran, Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications, Journal of Sol-Gel Science and Technology 52 (2) (2009) 188-196.
[12] D.A. Lucca, M.J. Klopfstein, R. Ghisleni, A. Gude, A. Mehner, W. Datchary, Investigation of Sol-Gel Derived ZrO2 Thin Films by Nanoindentation, CIRP Annals - Manufacturing Technology 53 (1) (2004) 475-478.
[13] Z. Wang, Z.J. Zhao, B.J. Yan, Y.L. Li, F. Feng, K. Shi, Z. Han, An orientation competition in yttria-stabilized zirconia thin films fabricated by ion beam assisted sputtering deposition, Thin Solid Films 520 (3) (2011) 1115-1119.
[14] M.V.F. Schlupp, M. Prestat, J. Martynczuk, J.L.M. Rupp, A. Bieberle-Huetter, L.J. Gauckler, Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition, Journal of Power Sources 202 (2012) 47-55.
[15] A.M. Torres-Huerta, M.A. Dominguez-Crespo, E. Onofre-Bustamante, A. Flores-Vela, Characterization of ZrO2 thin films deposited by MOCVD as ceramic coatings, Journal of Materials Science 47 (5) (2012) 2300-2309.
[16] H.-H. Huang, C.-C. Diao, C.-F. Yang, C.-J. Huang, Effects of substrate temperatures on the crystallizations and microstructures of electron beam evaporation YSZ thin films, Journal of Alloys and Compounds 500 (1) (2010) 82-86.
[17] M. Mishra, P. Kuppusami, A. Singh, S. Ramya, V. Sivasubramanian, E. Mohandas, Phase evolution in zirconia thin films prepared by pulsed laser deposition, Applied Surface Science 258 (12) (2012) 5157-5165.
[18] K. Izumi, H. Tanaka, M. Murakami, T. Deguchi, A. Morita, N. Tohge, T. Minami, Coating of fluorine-doped ZrO2 films on steel sheets by sol-gel method, Journal of Non-Crystalline Solids 121 (1–3) (1990) 344-347.
[19] C. Martinez, M. Sancy, J.H. Zagal, F.M. Rabagliati, B. Tribollet, H. Torres, J. Pavez, A. Monsalve, M.A. Paez, A zirconia-polyester glycol coating on differently pretreated AISI 316L stainless steel: corrosion behavior in chloride solution, Journal of Solid State Electrochemistry 13 (9) (2009) 1327-1337.
[20] E. Nouri, M. Shahmiri, H.R. Rezaie, F. Talayian, Investigation of structural evolution and electrochemical behaviour of zirconia thin films on the 316L stainless steel substrate formed via sol–gel process, Surface and Coatings Technology 205 (21-22) (2011) 5109-5115.
[21] R. López Ibáñez, F. Martín, J.R. Ramos-Barrado, D. Leinen, Large area zirconia coatings on galvanized steel sheet, Surface and Coatings Technology 202 (11) (2008) 2408-2412.
[22] M. Popovici, J. de Graaf, M.A. Verschuuren, P.C.J. Graat, M.A. Verheijen, Zirconia thin film preparation by wet chemical methods at low temperature, Thin Solid Films 519 (2) (2010) 630-634.
[23] A. Díaz-Parralejo, A.L. Ortiz, R. Caruso, Effect of sintering temperature on the microstructure and mechanical properties of ZrO2-3mol%Y2O3 sol–gel films, Ceramics International 36 (8) (2010) 2281-2286.
[24] Y.F. Gao, Y. Masuda, H. Ohta, K. Koumoto, Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution, Chemistry of Materials 16 (13) (2004) 2615-2622.
[25] M. Kakihana, M. Yoshimura, Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method, Bulletin of the Chemical Society of Japan 72 (7) (1999) 1427-1443.
[26] M. Yoshimura, T. Onoki, M. Fukuhara, X. Wang, K. Nakata, T. Kuroda, Formation of growing integrated layer [GIL] between ceramics and metallic materials for improved adhesion performance, Materials Science and Engineering: B 148 (1–3) (2008) 2-6.
[27] B.J.P.A.a.J. Garcés, The O-Zr (Oxygen-Zirconium) System, Bulletin of Alloy Phase Diagrams 7 (2) (1986) 116-124.
[28] G. Fadda, L. Truskinovsky, G. Zanzotto, Unified Landau description of the tetragonal, orthorhombic, and monoclinic phases of zirconia, Physical Review B 66 (17) (2002).
[29] K. Negita, Lattice vibrations and cubic to tetragonal phase transition in ZrO2, Acta Metallurgica 37 (1) (1989) 313-317.
[30] M. Yoshimura, Phase-stability of zirconia, American Ceramic Society Bulletin 67 (12) (1988) 1950-1955.
[31] L.F. Francis, Sol-Gel Methods for Oxide Coatings, Malerials and Manufacturing Processes 12 (6) (1997) 963-1015.
[32] M.P. Pechini, Barium Titanium Citrate, Barium Titanate and Processes for Producing Same, U.S. Pat. No. 3 231 328 (1969).
[33] J.P. Coutures, P. Odier, C. Proust, Barium-titanate formation by organic resins formed with mixed citrate, Journal of Materials Science 27 (7) (1992) 1849-1856.
[34] M.Kakihana, Invited Review “Sol-Gel Preparation of High Temperature Superconducting Oxides, Journal of Sol-Gel Science and Technology 6 (1996) 7-55.
[35] A. Apicella, H.B. Hopfenberg, S. Piccarolo, Low temperature thermal aging of ethylene vinyl alcohol copolymers, Polymer Engineering & Science 22 (6) (1982) 382-387.
[36] 李卓翰, 二氧化帆薄膜製備及其性質研究, 國立成功大學材料科學及工程學系碩士論文 (2006).
[37] R.P. Spiers, C.V. Subbaraman, W.L. Wilkinson, Free coating of a Newtonian liquid onto a vertical surface, Chemical Engineering Science 29 (2) (1974) 389-396.
[38] C.J. Brinker, G.C. Frye, A.J. Hurd, C.S. Ashley, Fundamentals of sol-gel dip coating, Thin Solid Films 201 (1) (1991) 97-108.
[39] 崔立人, 以浸鍍法被覆氮化硼薄膜於碳纖維之研究, 國立成功大學材料科學及工程學系碩士論文 (1999).
[40] G.H. Yi, Z. Wu, M. Sayer, Preparation of Pb(Zr,Ti)O3 thin-films by sol-gel processing -electrical, optical, and electro-optic properties, Journal of Applied Physics
64 (5) (1988) 2717-2724.
[41] 林建銘, 液相沉積法製備二氧化鋯之研究, 國立成功大學材料科學及工程學系碩士論文 (2005).
[42] P.J. Burnett, D.S. Rickerby, The relationship between hardness and scratch adhession, Thin Solid Films 154 (1–2) (1987) 403-416.
[43] N. Sugiyama, M. Yoshimura, Novel Growing Integration Layer (GIL) method for joining/bonding of metallic and ceramic materials, and its applications for bulk metallic glasses with high bioactivities, Materials Science and Engineering: B 161 (1–3) (2009) 31-35.
[44] S.-E.Y. Masahiro Yoshimura, Motoo Hayashi,Nobuo Ishizawa, Preparation of BaTiO3 Thin Film by Hydrothermal Electrochemical Method, Japanese Journal of Applied Physics 28 (11) (1989) L 2007-L 2009.
[45] P.C. Innocenzi, M. Guglielmi, M. Gobbin, P. Colombo, Coating of metals by the sol-gel dip-coating method, Journal of the European Ceramic Society 10 (6) (1992) 431-436.
[46] R. DiMaggio, L. Fedrizzi, S. Rossi, P. Scardi, Dry and wet corrosion behaviour of AISI 304 stainless steel coated by sol-gel ZrO2-CeO2 films, Thin Solid Films 286 (1-2) (1996) 127-135.
[47] K.-W. Chen, J.-F. Lin, W.-F. Tsai, C.-F. Ai, Plasma immersion ion implantation induced improvements of mechanical properties, wear resistance, and adhesion of diamond-like carbon films deposited on tool steel, Surface and Coatings Technology 204 (3) (2009) 229-236.
[48] J.J. Chen, Y. Gao, F. Zeng, D.M. Li, F. Pan, Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films, Applied Surface Science 223 (4) (2004) 318-329.
[49] S. Sakka, K. Kamiya, K. Makita, Y. Yamamoto, Formation of sheets and coating films from alkoxide solutions, Journal of Non-Crystalline Solids 63 (1–2) (1984) 223-235.
[50] J.-L. Cao, Y. Wang, T.-Y. Zhang, S.-H. Wu, Z.-Y. Yuan, Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation, Applied Catalysis B: Environmental 78 (1–2) (2008) 120-128.
[51] S. Tsunekawa, K. Asami, S. Ito, M. Yashima, T. Sugimoto, XPS study of the phase transition in pure zirconium oxide nanocrystallites, Applied Surface Science 252 (5) (2005) 1651-1656.
[52] A. Galtayries, R. Sporken, J. Riga, G. Blanchard, R. Caudano, XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterisation, Journal of Electron Spectroscopy and Related Phenomena 88 (1998) 951-956.
[53] T.L. Barr, An ESCA study of the termination of the passivation of elemental metals, The Journal of Physical Chemistry 82 (16) (1978) 1801-1810.
[54] C.R.C. A. R. Brooks, K. Doss,and Y. C. Lu, On the Role of Cr in the Passivity of Stainless Steel, Journal of the Electrochemical soceity 133 (12) (1986) 2459-2464
[55] A.M. Beccaria, G. Poggi, G. Castello, Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water, British Corrosion Journal 30 (4) (1995) 283-287.
[56] S. Contarini, S.P. Howlett, C. Rizzo, B.A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Applied Surface Science 51 (3–4) (1991) 177-183.
[57] A.J.A.W.a.A.J.B. G. S. A. M. Theunissen, Surface and grain boundary analysis of doped zirconia ceramics studied by AES and XPS Journal of Materials Science 27 (1992) 5057-5066.
[58] K. Izumi, M. Murakami, T. Deguchi, A. Morita, N. Tohge, T. Minami, Zirconia coating on stainless-steel sheets from organic zirconium compounds, Journal of the American Ceramic Society 72 (8) (1989) 1465-1468.
[59] F.E. Ghodsi, F.Z. Tepehan, G.G. Tepehan, Derivation of the optical constants of spin coated CeO2–TiO2–ZrO2 thin films prepared by sol–gel route, Journal of Physics and Chemistry of Solids 72 (6) (2011) 761-767.
[60] A.K. Bhosale, P.S. Shinde, N.L. Tarwal, R.C. Pawar, P.M. Kadam, P.S. Patil, Synthesis and characterization of highly stable optically passive CeO2–ZrO2 counter electrode, Electrochimica Acta 55 (6) (2010) 1900-1906.
[61] A.A. Ansari, Optical and structural properties of sol–gel derived nanostructured CeO2 film, Journal of Semiconductors 31 (5) (2010) 053001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊