跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳浩蔚
研究生(外文):Hao-WeiWu
論文名稱:以膠體鑄型法製備指叉型蜂巢狀固態燃料電池陽極基材之研究
論文名稱(外文):Development of SOFC anode-supported substrate having the honeycomb structure by gel-casting process
指導教授:方冠榮
指導教授(外文):Kuan-Zong Fung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:固態燃料電池陽極支撐蜂巢狀結構凝膠鑄型法
外文關鍵詞:SOFCAnode supportHoneycomb structureGel-casting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固態氧化物燃料電池(SOFC)具有〉70%以上的高能源轉換效率,為最被看好的能源轉換或發電技術之一,應用可由定置型發電廠至隨身攜帶的電源供應器,應用相當廣泛。本研究提出之更先進的閉管式蜂巢狀結構微管型SOFC,單位體積內具有更高的反應面積,且其尺寸也較亦控制,而其一體成型的設計可避免組裝不良所造成的斷路現象。此結構由許多一端閉口之管狀SOFC 單電池所組成,整體為一蜂巢狀指叉型結構微管型SOFC,此設計可用一般平板式SOFC 量測方式,分別於陽極通入氫氣、陰極通入空氣,可減少兩端開口設計時,氣體不易流通至電極與電解質界面所造成之濃度極化,也大幅降低測試時密封上的困難。
本研究以較為新型的陶瓷成型技術─膠體鑄型技術來製作 NiO-YSZ蜂巢狀指叉型結構微管型陽極電極。對於蜂巢狀指叉型結構微管型電極複雜尺寸精度及成份均勻性等要求,難以傳統的乾壓成型技術、注漿成型(slip casting)或射出成型(injection molding)等來製作,而膠體鑄型技術便可以依照模具設計,藉由控制懸浮液的 pH 值及分散劑的添加量,來製備流動性質佳且穩定性高之膠體懸浮液,經注模、原位聚合反應、乾燥及去黏結劑後可成功製備閉管式蜂巢狀指叉結構微管型SOFC陽極元件。再經由改良式浸鍍法浸鍍YSZ電解質薄膜,並經過高溫燒結,再浸鍍上鑭鍶錳氧化物(La0.8Sr0.2MnO3, LSM)陰極,便可完成一完整的SOFC元件。

SOFC possesses impressively high energy transfer efficiency (more than 70%), and be regard as one of the most promising technology of energy-transfer and power-generating. Diverse applications such as power plant, portable power supplier are its advantage.
In this research, we design advanced forming approaches. The honeycomb structure SOFC, has higher reaction surface per unit volume and more controllable size. Furthermore, the problem of short circuit caused by separated layers assembling could be solved in our design.
The honeycomb structure is assembled by many one-side sealed tubular SOFC single cells. Our design shares the same measuring and testing way with normal plate SOFC by supplying hydrogen to anode and air to cathode. This design can reduce that problem of polarization resistance. Moreover, it also decreases the difficulty of sealing during testing process.
In this research, we use novel ceramic forming technology, Gel-Casting, to manufacture the honeycomb structure. Hence, traditional ceramics forming technology such as pressure casting, slip casting, and injection molding are not suitable for such complicate shape.
In gel-casting technology, we can manufacture good mobility and high stability colloidal suspension by control the pH value and dispersant of suspension. In addition, we could get the complete honeycomb structure substrate of anode-support. After the manufacturing processes of casting, polymerization, drying, and de-binder, a complete NiO-YSZ honeycomb anode substrate was obtained. Lastly, the porous LSM layer was coated on the with YSZ electrolyte thin film for the SOFC testing.

中文摘要 I
誌謝 IV
總目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
第二章 原理與文獻回顧 3
2-1燃料電池簡介 3
2-1-1 燃料電池原理 3
2-1-2 燃料電池的種類 3
2-1-3 NiO-YSZ 在固態氧化物型燃料電池中之應用 9
2-2 陶瓷之各式成型技術 11
2-2-1 傳統成型技術簡介 11
2-2-2 新型膠體鑄型簡介 12
2-3 膠體鑄型法原理 15
2-3-1 膠體定義 15
2-3-2 膠體間作用力 16
2-3-3 膠體化學與 D.L.V.O.理論 17
2-3-4 懸浮液之流變性質 20
2-3-5 水凝膠簡介 23
2-3-6 自由基聚合反應(radical polymerization) 23
2-4 研究動機及目的 25
第三章 實驗步驟及方法 28
3-1 膠體溶液性質分析 30
3-1-1膠體懸浮溶液之界面電位分析 30
3-1-2膠體懸浮溶液之黏度測試 30
3-2 單體/交聯劑對凝膠成型生胚之影響分析 31
3-2-1凝膠成型生胚之硬度試驗 31
3-2-2 凝膠成型生胚TG-DTA & TMA之分析 31
3-3 浸鍍YSZ(Yttria stabilized zirconia)電解質薄膜 33
3-3-1 改良式浸鍍法浸鍍YSZ電解質薄膜 33
3-3-2 燒結試片顯微結構之觀察 33
3-4 LSM陰極材料之浸鍍 35
第四章 結果與討論 36
4-1 膠體溶液體性質分析 36
4-1-1分散劑濃度不同的懸浮溶液對界面電位之影響 36
4-1-2不同劑量的分散劑對膠體溶液流變行為之影響 42
4-2 單體/交聯劑對凝膠成型生胚之影響 46
4-2-1不同單體/交聯劑比例對凝膠成型生胚在之硬度測試 46
4-2-2 凝膠成型生胚之TG-DTA & TMA分析 50
4-3 改良式浸鍍法浸鍍YSZ電解質薄膜 55
4-3-1 浸鍍時間對YSZ薄膜沉積厚度之影響 55
4-3-2 燒結後YSZ電解質薄膜顯微結構之分析 58
4-4 高溫處理後LSM陰極顯微結構之分析 60
第五章 結論 63
參考文獻 65


[1]W. R Grove, philos. Mag., 14, 127 (1839).
[2]N. Q. Minh, “Ceramic Fuel Cell, J. Am. Ceram. Soc., 73, 563 (1993).
[3]K. Kordesch and G. Simader, “Fuel cells and their applications, pp.51-166 (1996)
[4]H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide, Thermochimica Acta, 28, 121(1979).
[5]S. Faaland, M. A. Einarsrud, K. Wiik and T. Grande, “Reactions between La1–xCaxMnO3 and CaO-stabilized ZrO2 part I Powder mixtures, J. Mater. Sci., 34, 5811-5819 (1999).
[6]J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, and K. Fueki, “Electrical Conductivity and Seebeck Coefficient of Nonstoichiometric La1–xSrxCoO3–δ, J. Electrochem. Soc., 138, 1018 (1991).
[7]汪建民主編,“陶瓷技術手冊(上),中華民國粉末冶金協會出版,p60-68 (1994)。
[8]Mutsuddy, B. C., “Ceramics Injection Molding, Chapman & Hall (1995).
[9]“精密陶瓷入門(I) ,工業材料研究院編印,P8-37 (1989)。
[10]A. C. Young, O. O. Ornatete, M. A. Janney and Paul A. Menchhofer, “Gelcasting of Alumina, J Am Ceram. Soc., 74, 612-18 (1991).
[11]O. O. Omatete, M. A. Janney, R. A. Strelow, “Gelcasting—a new ceramicforming process, Am. Ceram. Soc. Bull., 70, 1641–1647 (1991).
[12]O. O. Omatete, M. A. Janney and S. D. Nunn, “Gelcasting: From Laboratory Development Toward Industrial Production, J. Eur. Ceram. Soc., 17, 407-413 (1997).
[13]M. A. Janney, S. D. Nunn, C. A. Walls, O. O. Omatete, R. B. Ogle, G. H. Kirby and A. D. McMillan, “GELCASTING, THE HANDBOOK OF CERAMIC ENGINEERING (1998).
[14]D. Guo, K. Cai, Y. Huang, L. Li, Z. Gui, “Water based gelcasting of lead zirconate titanate, Materials Research Bulletin, 38, 807–816 (2003).
[15]K. Prabhakaran, S. Priya, N. M. Gokhale, S. C. Sharma, “Microporous alumina substrate with porosity )70% by gelcasting, Ceramics International, 33, 515–520 (2007).
[16]K. Prabhakaran, A. Melkeri, M. O. Beigh, N. M. Gokhale and S. C. Sharma, “Preparation of a Porous Cermet SOFC Anode Substrate by Gelcasting of NiO–YSZ Powders, J. Am. Ceram. Soc., 90, 622–625 (2007).
[17]Mohammad J. Zohuriaan-Mehr and Kourosh Kabiri, “Superabsorbent Polymer Materials:A Review, Iranian Polymer Journal, 17, 451-477 (2008).
[18]Buchholz FL, Graham AT, “Modern Superabsorbent Polymer Technology, Wiley-VCH, New York (1998).
[19]張有義,郭蘭生編著,“膠體界面化學入門,高立圖書有限公司。
[20]M. N. Rahaman, “Science of Collidal Processing, in Ceramic Processing and Sintering, New York, p146 (1995).
[21]江體乾著,“化工流變學,華東理工大學出版社 (2004)。
[22]Bird B. R., Armstrong R. C. and Hassager O., “Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics., John Wiley & Sons, New York, USA (1987).
[23]Duncan J. Shaw, “Introduction to Colloid and Surface Chemistry, Butterworth Heinemann, 4thed (1992).
[24]顏肖慈,羅明道,“介面化學 ,化學工業出版社 p149 (2005)。
[25]N.H. Yang, T. Kurokawa, Y. Katsuyama, H. Tsukeshiba, J. P. Gong, Y. Osada, et al., “Structural characteristics of gel with extremely high mechanical strength, Macromolecules 37, 537-4, (2004).
[26]K. Yasuda, J. P. Gong, Y. Katsuyama, Y. Tanabe, E. Kondo, et al., “Biomechanical properties high toughness double network hydrogels, Biomaterials, 20, 4468-4475 (2005).
[27]余勝雄,“利用兩階段自由基共聚合製備酸鹼應答型水膠及性質探討,中興大學化學工程研究所碩士論文 (2002)。
[28]林育璋,“以水膠應用於人工敷料之研發,南台科技大學化學工程與材料工程研究所 (2005)。
[29]George Odian, “Principles of Polymerization, 4th ed.
[30]方松傳,方偉平,王建行,洪培元,陳連輝,陳銘田,劉世琳,“有機化學(全),高立圖書有限公司 (2003)。


電子全文 電子全文(網際網路公開日期:20220101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top