跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李信委
研究生(外文):Hsin-WeiLee
論文名稱:摩擦攪拌製程對AZ31鎂合金擠型材微觀組織及拉伸性質之影響
論文名稱(外文):Influence of Friction Stir Process on Microstructure and Tensile Properties of Extruded AZ31 Mg Alloy
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenLi-Hui Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:摩擦攪拌製程鎂合金織構拉伸性質雙晶變形加工硬化
外文關鍵詞:friction stir processMg alloytexturetensile propertiestwinningwork hardening
相關次數:
  • 被引用被引用:4
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
AZ31鎂合金由於具有低密度與高比強度等優點,常用於板材成型,同時也因具有極少量第二相而適合於鎂合金基本機械性質之研究。晶粒細化被視為改善鎂合金延性的有效方法,因此本論文以摩擦攪拌製程對AZ31鎂合金擠型材進行表面改質,調查摩擦攪拌前後結晶取向與晶粒結構之變化,並探討攪拌組織特徵對AZ31鎂合金拉伸性質之影響。
金相觀察結果顯示,摩擦攪拌製程可以明顯降低AZ31鎂合金之晶粒徑,同時攪拌材的晶粒徑分布也較原擠型材集中,但在攪拌區中可觀察到有不同大小晶粒交錯排列的帶狀組織。另一方面,X光繞射結果顯示攪拌材的織構特徵為底面圍繞一傾斜軸作旋轉排列,擠型材的織構特徵為底面平行擠型方向排列。
由於攪拌材的織構特性,在平行攪拌方向拉伸時其變形機構以底面滑移與拉伸雙晶為主,因此造成攪拌材的拉伸強度明顯低於擠型材沿擠型方向的拉伸強度;於室溫至300°C拉伸時,攪拌材降伏強度的溫度依存性也較不明顯。此外,由於攪拌區為具不同優選方位區域之組合,因此攪拌材的降伏強度會受變形阻抗最低之區域主導:垂直攪拌方向拉伸時攪拌區外側區域容易產生變形,平行攪拌方向拉伸時則是攪拌區中央兩側強度最低。
降伏強度較低,且於變形過程保持高加工硬化率之材料會有較佳的均勻延伸率,因此攪拌材得以在室溫及100°C具有較擠型材為佳的均勻延伸率與拉伸延性。根據變形組織的觀察結果,攪拌材的加工硬化率提升應歸因於拉伸雙晶所提供之強化效應。提高拉伸溫度至200°C與300°C時,由於缺乏拉伸雙晶對加工硬化之貢獻,同時動態回復或動態再結晶等軟化機制因溫度提升而活化,因而攪拌材之均勻延伸率隨溫度增加而下降。另一方面,由變形組織的觀察可發現在200°C與300°C容易產生晶粒間破壞,因此攪拌材的拉伸延性於200°C與300°C之間隨拉伸溫度上升而略微下降。
除了加工硬化率對均勻延伸率的效應之外,攪拌區內的帶狀結構則是影響攪拌材拉伸延性的另一項因素。拉伸方向平行攪拌方向時攪拌材容易觀察到圓弧形的破斷面缺口;而根據拉伸性質與破斷面觀察,攪拌區內應有變形破壞阻抗較弱之區域,容易在拉伸時成為破壞的起源。由於室溫至300°C都可觀察到圓弧形的破壞特徵,此一延性弱化機制同時也對攪拌材在200°C與300°C之延性降低造成影響。另一方面,垂直攪拌方向拉伸時,攪拌材的拉伸試片則容易在塑性變形強度較低或是組織不均勻性較高之區域產生破壞。

Owing to the advantages such as low mass density and high specific strength, AZ31 Mg-Al-Zn alloy has been used in the sheet forming. Since the alloy contains few second phase particles, it is suitable for the investigation in mechanical properties. Friction stir process (FSP) was developed as a powerful approach to grain refinement for ductility improvement. This thesis adopted FSP in the surface modification of the extruded AZ31 Mg alloy. The aim of this study was to investigate the effects of FSP on the texture and the grain structure of AZ31 Mg alloy, and the influence of microstructural characteristics resulting from FSP on the tensile properties was discussed.
Experimental results showed that grain refinement can be acquired by FSP. The friction stir processed (FSPed) alloy had comparatively homogeneous grain size distribution than the base mental does. However, banded structures combining grains with different grain size can be recognized in the stir zone. X-ray diffraction patterns revealed the rotation of the basal planes tilted from the process direction in the stir zone; meanwhile, the basal planes of the extruded sample aligned parallel to the extrusion direction.
Because of the above-mentioned basal texture in the FSPed alloy, the tensile stress of the FSPed specimen loaded along the process direction was obviously lower than that of the extruded specimen in tension along the extrusion direction, and the yield stress of the FSPed specimen had no obvious temperature dependence. Coupled with the sections of specific orientations, the yield stress of the FSPed specimen was similar to that of the region with the minimum deformation resistance. Loaded perpendicular to process direction, the weak regions were close to the two sides of the stir zone, but the weak regions located close to the center of the stir zone in tension along the process direction.
A better uniform elongation can be acquired by reducing yield stress and increasing work hardening rate, which is responsible for the better tensile ductility of the FSPed specimen at room temperature and 100°C in comparison with that of the extruded specimen. According to the deformed microstructure, the increase of work hardening rate in the FSPed specimen could be referred to the occurrence of the tension twins in the tensile deformation. At 200°C and 300°C, the uniform elongation of the FSPed alloy reduced due to lacking the work hardening contributed by the tension twins. Furthermore, dynamic recovery and dynamic recrystallization were active at 200°C and 300°C, which also caused the reduction of uniform elongation of the tensile specimen. On the other hand, the formation of voids on the grain boundaries was observed in the deformed microstructure of the FSPed specimens. The total elongation of the FSPed specimens decreased with increasing temperature to 200°C and 300°C.
Besides the effect of work hardening rate on the uniform elongation, the existence of banded structures in the stir zone strongly affected the tensile ductility of the FSPed specimens. Loaded along the process direction, the FSPed specimens tended to fracture along an arc shape. From the observation of their fracturing surface, there were some regions with low fracture resistance in the stir zone, and these regions may become the source of fracturing in the tensile deformation of the FSPed specimen. The effect of the banded structure on the fracturing also affected the reducing ductility of FSPed loaded at 200°C to 300°C since the arc-shaped fracturing morphology could be recognized at all test temperatures. In tension perpendicular to the process direction, fracturing developed easily in regions which had low plastic deformation resistance or inhomogeneous grain structure.

總目錄

中文摘要....................................................I
英文摘要..................................................III
誌謝......................................................VI
總目錄...................................................VII
表目錄.....................................................X
圖目錄....................................................XI

第一章 前言................................................1
第二章 文獻回顧.............................................4
2-1 鎂合金的變形行為........................................4
2-1-1 變形機構.............................................4
2-1-2 取向因素對變形機構之影響...............................6
2-1-3 熱加工對鎂合金織構之影響...............................7
2-2 鎂合金摩擦攪拌相關探討..................................7
2-2-1 摩擦攪拌製程.........................................7
2-2-2 帶狀結構.............................................8
2-2-3 鎂合金之攪拌織構......................................9
2-2-4 AZ31鎂合金攪拌材之拉伸性質............................9
2-3 加工硬化對塑性變形穩定性之影響..........................11
2-3-1 加工硬化率(work hardening rate, dσ/dε)與均勻塑性應變.11
2-3-2 鎂合金變形特徵對加工硬化率之影響......................12
(a) 拉伸雙晶.............................................12
(b) 壓縮雙晶.............................................12
(c) 動態回復(dynamic recovery, DRV)......................13
(d) 動態再結晶...........................................13
2-4 研究主題與架構........................................14
第三章 摩擦攪拌製程對AZ31鎂合金組織與室溫拉伸性質之影響........23
3-1 概述.................................................23
3-2 實驗方法.............................................23
3-2-1 材料製備...........................................23
3-2-2 金相觀察...........................................24
3-2-3 結晶方位分析........................................24
3-2-4 拉伸試驗...........................................25
3-3 實驗結果.............................................26
3-3-1 摩擦攪拌製程對AZ31鎂合金微觀組織之影響................26
3-3-2 攪拌材與擠型材拉伸性質比較...........................28
3-3-3 拉伸應變對微觀組織之影響.............................29
3-4 討論................................................30
3-4-1 從優取向與晶粒徑對AZ31鎂合金拉伸強度之影響.............30
3-4-2 從優取向與晶粒徑對AZ31鎂合金拉伸延性之影響.............32
3-4-3 雙晶型態對AZ31鎂合金加工硬化率之影響...................33
3-5 結論................................................35
第四章 AZ31鎂合金摩擦攪拌前後之高溫拉伸性質..................61
4-1 概述................................................61
4-2 實驗方法.............................................61
4-3 實驗結果.............................................62
4-3-1 變形溫度對拉伸性質之影響.............................62
4-3-2 不同溫度之變形組織特徵...............................63
4-4 討論.................................................64
4-4-1 變形溫度對拉伸強度之影響.............................64
4-4-2 變形溫度對拉伸延性之影響.............................65
4-5 結論.................................................68
第五章 織構分布對摩擦攪拌之AZ31鎂合金拉伸性質之影響...........79
5-1 概述.................................................79
5-2 實驗方法.............................................79
5-3 實驗結果.............................................80
5-3-1 拉伸方向對攪拌材拉伸性質與變形破壞行為之影響............80
5-3-2 不同取樣位置對攪拌區拉伸性質與變形破壞行為之影響........81
5-4 討論................................................83
5-4-1 從優取向對AZ31鎂合金攪拌材降伏強度之影響..............83
5-4-2 從優取向與帶狀結構對AZ31鎂合金攪拌材拉伸延性之影響......85
5-4-3 帶狀結構對AZ31鎂合金攪拌材拉伸破壞之影響...............87
5-5 結論.................................................88
第六章 總結論............................................105
參考文獻.................................................107
附錄一 Schmid factor之計算................................119

表目錄

表2-1 鎂與AZ31鎂合金各變形機構之臨界分解剪應力。Basal:底面滑移;Prism:柱面滑移;Pyr.:錐面滑移;T-twin:拉伸雙晶;C-twin:壓縮雙晶;SC:單晶;PC:多晶。................................15
表2-2 摩擦攪拌製程前後,AZ31鎂合金晶粒徑與拉伸性質之比較,拉伸方向平行攪拌方向。base metal:母材;FSPed alloy:攪拌材;↓:攪拌材低於母材;↑:攪拌材高於母材;≒:兩者約略相等。................16
表3-1 實驗材料AZ31鎂合金化學組成(wt.%)。..................36
表3-2 FS-1之各項摩擦攪拌製程參數。........................37
表3-3 FS-2之各項摩擦攪拌製程參數。........................37

圖目錄

圖2-1 摩擦攪拌銲接示意圖。................................17
圖2-2 攪拌區形成過程示意圖,擷取自文獻[89]。向上為攪拌方向;內側圓圈為攪拌棒凸梢;斜線部份為攪拌棒帶動之材料。.................18
圖2-3 Park等人[36]提出,AZ61鎂合金攪拌區的(a)底面呈橢圓狀分布與(b)織構分布變化。..........................................19
圖2-4 Xin等人[35]所報導,AZ31鎂合金經過摩擦攪拌後攪拌區至母材之底面分布。.................................................20
圖2-5 (a) Bhargava等人[10]於攪拌區中央所觀察到之AZ31鎂合金攪拌織構。sample#1:PD面;sample#2:ND面;sample#3:TD面。(b) Yu等人[11]於不同攪拌參數所觀察到之底面分布變化。..................21
圖2-6 (a)真應力σ(ε)與加工硬化率dσ/dε(ε)之關係,兩者相等時產生頸縮。(b)相同加工硬化率,降伏強度大小與均勻應變量之關係;(c)相同降伏強度,加工硬化率高低對均勻應變量之影響;(d)相同降伏強度,起始加工硬化率高低與均勻應變量之相關性。根據文獻[90]重繪。..............22
圖3-1 擠型材OM金相:(a) EX-1,平均晶粒徑:水平方向為184 μm,垂直方向為110μm;(b) EX-2,平均晶粒徑:13μm。.................38
圖3-2 (a)摩擦攪拌製程示意圖(非等比例縮放);(b)攪拌棒構型以及尺寸示意圖,材質為工具鋼SKD61。................................39
圖3-3 FS-1之X光繞射試片取樣位置示意圖。探測ND面者,代號為ND;探測PD面者,代號為PD;沿TD自後退端到前進端,依序為TD-RS、TD-C及TD-AS,其間隔為2 mm。........................................40
圖3-4 FS-1之X光薄膜繞射試片取樣位置示意圖。探測面為TD面,自後退端到前進端依序為R2、R1、C1、A1及A2。.......................41
圖3-5 攪拌材之拉伸試片取樣位置示意圖:(a)俯視圖,中央深色部分為攪拌棒凸梢通過之區域;(b)前視圖,平行部範圍以深色表示,虛線為攪拌棒肩部與凸梢範圍。(c)拉伸試片尺寸,攪拌材試片的凸梢通過區域以灰色標示。.....................42
圖3-6 FS-1之OM金相:(a)攪拌試片之巨觀組織(PD面);(b)攪拌區中央之微觀組織與(c)帶狀結構;(d)過渡區。.........................43
圖3-7 FS-1攪拌區之OM金相。Center:攪拌區中線位置;RS-2.7:距中線2.7 mm,近RS處;AS-2.7:距中線2.7 mm,近AS處;距上表面之縱深標示於左側,單位為mm。......................................44
圖3-8 FS-2之OM金相(PD面)。.............................45
圖3-9 FS-2與EX-2晶粒徑分布之比較,兩者數據皆為500個晶粒之統計結果。....................................................46
圖3-10 各取樣面之X光繞射結果:(a) EX-1;(b) EX-2;(c) FS-1;(d) FS-2。(e)鎂的標準粉末繞射圖(JCPDS No. 35-0821)。.......47
圖3-11 EX-1於TD面所測得之結晶面分布。.....................48
圖3-12 FS-1於攪拌區內不同位置之結晶面分布(觀察面為TD面)。...49
圖3-13 底面排列方式示意圖:FS-1為傾斜之(0002)面旋轉排列,EX-1則為(0002)面平行擠型方向排列。...............................50
圖3-14 FS-2於攪拌區中央之結晶面分布(觀察面為TD面)。.........51
圖3-15 摩擦攪拌前後拉伸性質比較:(a) FS-1與EX-1;(b) FS-2與EX-2。YS:降伏強度;UTS:抗拉強度;UE:均勻延伸率;TE:總延伸率。..52
圖3-16 (a)真應力-應變曲線之比較,曲線取至均勻延伸率。加工硬化率之比較:(b) FS-1與EX-1;(c) FS-2與EX-2。計算加工硬化率所取應變量間隔為0.015。...............................................53
圖3-17 試片拉伸至破斷後次表面之OM微觀組織:(a) FS-1;(b) FS-2;(c)及(e) EX-1;(d)及(f) EX-2。............................54
圖3-18 拉伸試片應變量為0.03時次表面之OM微觀組織:(a) FS-1;(b) EX-1。...................................................55
圖3-19 不同應變量(εp),FS-2之微觀組織變化(OM)。(a)至(e)分別對應至圖3-16(c)中a至e的不同應變量。............................56
圖3-20 擠型材於不同條件之拉伸性質。EX-1:平行擠型方向拉伸,晶粒徑〉100 μm;EX-2:平行擠型方向拉伸,平均晶粒徑約13 μm;EX-1-TD:垂直擠型方向拉伸,晶粒徑同EX-1。...............................57
圖3-21 優選方位與拉伸方向之關係:(a)攪拌材與(b)擠型材,每一刻度代表10°。×:拉伸方向;●:底面;■:柱面。......................58
圖3-22 c軸與施力軸夾角(rotation angle)對Schmid factor之影響:(a)底面滑移;(b)拉伸雙晶。.................................59
圖3-23 擠型材雙晶內部的底面位置:(a)拉伸雙晶;(b)壓縮雙晶。A至F分別對應至不同組{1011}〈1012〉與{1012}〈1011〉雙晶變形後的底面位置。×:拉伸方向;●:底面位置。....................................60
圖4-1 FS與EX拉伸性質對變形溫度之依存性:(a)抗拉強度(UTS)及降伏強度(YS);(b)總延伸率(TE)及均勻延伸率(UE)。(c)均勻延伸率佔總延伸率之比例與變形溫度之關係。.....................................70
圖4-2 (a) FS與(b) EX於不同溫度之真應力-應變曲線。(c) FS與(d) EX之加工硬化率。真應力-應變曲線取至均勻延伸率之應變量,計算所取之應變量間隔為0.015。.........................................71
圖4-3 FS於不同變形溫度拉伸至破斷後,次表面之OM微觀組織:(a)室溫;(b) 100°C;(c) 200°C;(d)及(e) 300°C。................72
圖4-4 EX於不同變形溫度拉伸至破斷後,次表面之OM微觀組織:(a)室溫;(b) 100°C;(c)及(e) 200°C;(d)及(f) 300°C。...........73
圖4-5 拉伸溫度為100°C,應變量為0.03時次表面之OM微觀組織:(a) FS;(b) EX,箭頭所指為雙重雙晶。...........................74
圖4-6 拉伸試片靠近破斷處之表面晶粒形貌(SEM):(a)及(c) FS,200°C拉伸;(b)及(d) EX,200°C拉伸;(e) FS與(f) EX,300°C拉伸。...75
圖4-7 FS拉伸破斷試片之巨觀形貌(SEM):(a)室溫,(b)及(c)破斷面附近之裂紋。(續下頁)........................................76
圖4-7 FS拉伸破斷試片之巨觀形貌(SEM):(d) 100°C;(e) 200°C;(f) 300°C。圓圈處為破斷面附近之裂紋。(續上頁)...............77
圖4-8 當破壞強度σF小於頸縮之流變應力σu時,會影響實驗測得之均勻應變量。εu為產生頸縮之均勻應變量,εF為拉伸破壞之應變量。........78
圖5-1 (a)拉伸試片取樣位置示意圖,以灰色標示攪拌區之分布。試片尺寸:(b) FS,同圖3-5(c);(c)微區拉伸試片及TD;(d) TDp。......90
圖5-2 平行(FS)與垂直攪拌方向(TD及TDp) 之拉伸性質比較,FS數據同圖3-15(a)之FS-1。........................................91
圖5-3 平行(FS)與垂直攪拌方向(TD及TDp)拉伸之(a)真應力-應變曲線與(b)加工硬化率。真應力-應變曲線取至均勻延伸率之應變量,計算所取之應變量間隔為0.015。...........................................92
圖5-4 垂直攪拌方向拉伸試片破斷位置(OM):(a) TD試片於靠近RS側斷裂;(b) TDp試片於AS側斷裂;攪拌區兩側箭頭所指位置出現較明顯的截面積縮小。(c)拉伸破斷試片側視圖,箭頭標示厚度縮減的位置。..........93
圖5-5 垂直攪拌方向拉伸之破斷面(SEM):(a) TD試片;TD攪拌區(b)靠近上方,(c)中央以及(d)近底部之區域。(續下頁).................94
圖5-5 垂直攪拌方向拉伸之破斷面(SEM):(e) TDp試片;TDp攪拌區(f)近上方與(g)近底部之區域。(續上頁)...........................95
圖5-6 平行攪拌方向拉伸,攪拌區位置與拉伸性質之關係:(a)強度及(b)延性,大型試片FS之拉伸結果以水平虛線標示。...................96
圖5-7 攪拌區內各微區試片之(a)真應力-應變曲線與(b)加工硬化率。真應力-應變曲線取至均勻延伸率之應變量,計算所取之應變量間隔為0.015。...............................................97
圖5-8 平行攪拌方向拉伸,拉伸破斷試片形貌(OM):(a)大型拉伸試片及(b)微區拉伸試片。.......................................98
圖5-9 微區試片拉伸至破斷之形貌(SEM):(a) R2;(b) R1;(c) C1;(d) A1;(e) A2。黑色圓圈標示出試片表面平行破斷面之裂紋。(續下頁)...................................................99
圖5-9 微區試片拉伸至破斷之形貌(SEM):(f) R2及(g) A2試片圓圈處之裂紋形貌。(續上頁).......................................100
圖5-10 平行攪拌方向拉伸之破斷面特徵(SEM):(a) FS;(b) A2;(c) A1;(d) C1;(e) R1;(f) R2。............................101
圖5-11 攪拌區內c軸與拉伸軸之夾角分布。◆表平行攪拌方向拉伸;◇表垂直攪拌方向拉伸;FS與TD試片分別以雙箭頭標示出拉伸試片所擁有之攪拌區範圍。....................................................102
圖5-12 FS試片拉伸破斷面之EDS成份分析結果。.................103
圖5-13 攪拌區上表面之OM微觀組織,在層與層之間產生微小晶粒(箭頭所指)。...................................................104
圖A1-1 六方晶座標(a_u,a_v,a_t,c)與拉伸軸t之關係。..........121

1. E. Aghion, B. Bronfin and D. Eliezer, “The Role of the Magnesium Industry in Protecting the Environment, J. Mater. Process. Technol., 117, pp. 381-385, 2001.
2. J. T. Carter, P. E. Krajewski and R. Verma, “The Hot Blow Forming of AZ31 Mg Sheet: Formability Assessment and Application Development, JOM, 60(11), pp. 77-81, 2008.
3. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith and C. J. Dawes, Friction Stir Butt Welding, GB Patent No. 9125978.8, International Patent Application No. PCT/GB92/02203, 1991.
4. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara and A. K. Mukherjee, “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scripta Mater., 42, pp. 163-168, 2000.
5. R. S. Mishra and M. W. Mahoney, “Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys, Mater. Sci. Forum, 357-359, 507-514, 2001.
6. W. Woo, H. Choo, D. W. Brown, P. K. Liaw and Z. Feng, “Texture Variation and Its Influence on the Tensile Behavior of a Friction-Stir Processed Magnesium Alloy, Scripta Mater., 54, pp. 1859-1864, 2006.
7. F. Y. Hung, C. C. Shih, L. H. Chen and T. S. Lui, “Microstructures and High Temperature Mechanical Properties of Friction Stirred AZ31-Mg Alloy, J. Alloy. Compd., 428, pp. 106-114, 2007.
8. W. Woo, H. Choo, M.B. Prime, Z. Feng and B. Clausen, “Microstructure, Texture and Residual Stress in a Friction-Stir-Processed AZ31B Magnesium Alloy, Acta Mater., 56, pp. 1701-1711, 2008.
9. F. Y. Hung, T. S. Lui, L. H. Chen and K. J. Zhuang, “Mechanical Properties and Resonant Characteristics of Friction Stirred AZ31-Mg Alloy, Mater. Trans., JIM, 49(11), pp. 2591-2596, 2008.
10. G. Bhargava, W. Yuan, S. S. Webb and R. S. Mishra, “Influence of Texture on Mechanical Behavior of Friction-Stir-Processed Magnesium Alloy, Metall. Mater. Trans. A, 41A, pp. 13-17, 2010.
11. Z. Yu, H. Choo, Z. Fengb and S. C. Vogel, “Influence of Thermo-Mechanical Parameters on Texture and Tensile Behavior of Friction Stir Processed Mg Alloy, Scripta Mater., 63, pp. 1112-1115, 2010.
12. W. Yuan, R. S. Mishra, B. Carlson, R. K. Mishra, R. Verma and R. Kubic, “Effect of Texture on the Mechanical Behavior of Ultrafine Grained Magnesium Alloy, Scripta Mater., 64, pp. 580-583, 2011.
13. Y. N. Wang, C. I. Chang, C. J. Lee, H. K. Lin and J. C. Huang, “Texture and Weak Grain Size Dependence in Friction Stir Processed Mg-Al-Zn Alloy, Scripta Mater., 55, pp. 637-640, 2006.
14. S. R. Babu, V. S. S. Kumar and V. Balasubramanian and G. M. Reddy, “Tensile Properties and Microstructural Evolution of Friction Stir Processed Extruded AZ31B Alloy, Appl. Mech. Mater., 110-116, pp. 606-610, 2012.
15. C. J. Lee, J. C. Huang and X. H. Du, “Improvement of Yield Stress of Friction-Stirred Mg-Al-Zn Alloys by Subsequent Compression, Scripta Mater., 56, pp. 875-878, 2007.
16. J. A. del Valle, P. Rey, D. Gesto, D. Verdera and O. A. Ruano, “Friction Stir Processing of the Magnesium Alloy AZ61: Grain Size Refinement and Mechanical Properties, Mater. Sci. Forum, 706-709, pp. 1823-1828, 2012.
17. A. H. Feng and Z. Y. Ma, “Microstructural Evolution of Cast Mg-Al-Zn during Friction Stir Processing and Subsequent Aging, Acta Mater., 57, pp. 4248-4260, 2009.
18. S. T. Chen, T. S. Lui and L. H. Chen, “Microstructural Stability of Friction Stirred AA 2218 Alloy on Tensile Properties at Elevated Temperature, Mater. Trans., JIM, 48(3), pp. 510-514, 2007.
19. S. T. Chen, T. S. Lui and L. H. Chen, “Effect of Revolutionary Pitch on the Microhardness Drop and Tensile Properties of Friction Stir Processed 1050 Aluminum Alloy, Mater. Trans., JIM, 50(8), pp. 1941-1948, 2009.
20. E. A. El-Danaf, M. M. El-Rayes and M. S. Soliman, “Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Mater. Design, 31, pp. 1231-1236, 2010.
21. A. L. Pilchak, D. M. Norfleet, M. C. Juhas and J. C. Willams, “Friction Stir Processing of Investment-Cast Ti-6Al-4V: Microstructure and Properties, Metall. Mater. Trans. A, 39A, pp. 1519-1524, 2008.
22. Z. Y. Ma, A. L. Pilchak, M. C. Juhas and J. C. Williams, “Microstructural Refinement and Property Enhancement of Cast Light Alloys via Friction Stir Processing, Scripta Mater., 58, pp. 361-366, 2008.
23. T. W. Cheng, T. S. Lui and L. H. Chen, “Microstructural Features and Erosion Wear Resistance of Friction Stir Surface Hardened Spheroidal Graphite Cast Iron, Mater. Trans., JIM, 53(1), pp. 167-172, 2012.
24. H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi, “Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recystallization, Mater. Trans., JIM, 42(7), pp. 1200-1205, 2001.
25. A. Bussiba, A. B. Artzy, A. Shtechman, Sifergan and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys - Towards Superplasticity Studies, Mater. Sci. Eng. A, 302, pp. 56-62, 2001.
26. K. Kubota, M. Mabuchi and K. Higashi, “Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys, J. Mater. Sci., 34, pp. 2255-2262, 1999.
27. S. E. Ion, F. J. Humphreys and S. H. White, “Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium, Acta Metall., 30, pp. 1909-1919, 1982.
28. T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, “Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure, Scripta Mater., 45, pp. 89-94, 2001.
29. S. R. Agnew, J. A. Horton, T. M. Lillo and D. W. Brown, “Enhanced Ductility in Strongly Texture Magnesium Produced by Equal Channel Angular Processing, Scripta Mater., 50, pp. 377-381, 2004.
30. H. K. Lin, J. C. Huang and T. G. Langdon, “Relationship between Texture and Low Temperature Superplasticity in an Extruded AZ31 Mg Alloy Processed by ECAP, Mater. Sci. Eng. A, 402, pp. 250-257, 2005.
31. J. A. del Valle, M. T. Pérez-Prado and O. A. Ruano, “Texture Evolution during Large-Strain Hot Rolling of the Mg AZ61 Alloy, Mater. Sci. Eng. A, 355, pp. 68-78, 2003.
32. M. T. Pérez-Prado, J. A. del Valle, J. M. Contreras and O. A. Ruano, “Microstructural Evolution during Large Strain Hot Rolling of an AM60 Mg Alloy, Scripta Mater., 50, pp. 661-665, 2004.
33. R. B. Figueiredoa and T. G. Langdon, “Development of Structural Heterogeneities in a Magnesium Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 528, pp. 4500-4506, 2011.
34. M. T. Pérez-Prado, J. A. del Valle and O.A. Ruano, Grain Refinement of Mg-Al-Zn Alloys via Accumulative Roll Bonding, Scripta Mater., 51, pp. 1093-1099, 2004.
25. R. Xin, B. Li and Q. Liu, “Microstructure and Texture Evolution during Friction Stir Processing of AZ31 Mg Alloy, Mater. Sci. Forum, 654-656, pp. 1195-1200, 2010.
36. S. H. C. Park, Y. S. Sato and H. Kokawa, “Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy, Metall. Mater. Trans. A, 34A, pp. 987-994, 2003.
37. K. N. Krishnan, “On the Formation of Onion Rings in Friction Stir Welds, Mater. Sci. Eng. A, 327, pp. 246-251, 2002.
38. B. Yang, J. Yan, M. A. Sutton and A. P. Reynolds, “Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds Part I. Metallurgical Studies, Mater. Sci. Eng. A, 364, pp. 55-65, 2004.
39. B. Yang, J. Yan, M. A. Sutton and A. P. Reynolds, “Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds Part II. Mechanical Characterization, Mater. Sci. Eng. A, 364, pp. 66-74, 2004.
40. J. A. Schneider and A. C. Nunes, Jr., “Characterization of Plastic Flow and Resulting Microtextures in a Friction Stir Weld, Metall. Mater. Trans. B, 35B, pp. 777-783, 2004.
41. G. R. Cui, Z. Y. Ma and S. X. Li, “Periodical Plastic Flow Pattern in Friction Stir Processed Al-Mg Alloy, Scripta Mater., 58, pp. 1082-1085, 2008.
42. K. Kumar and S. V. Kailas, “The Role of Friction Stir Welding Tool on Material Flow and Weld Formation, Mater. Sci. Eng. A, 485, pp. 367-374, 2008.
43. L. E. Murr and C. Pizaña, “Dynamic Recrystallization: The Dynamic Deformation Regime, Metall. Mater. Trans. A, 38A, pp. 2611-2628, 2007.
44. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM, Metals Park, Ohio, pp. 13-43, 1999.
45. J. A. Esparza, W. C. Davis, E. A. Trillo and L. E. Murr, “Friction-Stir Welding of Magnesium Alloy AZ31B, J. Mater. Sci. Lett., 21, pp. 917-920, 2002.
46. E. Schmid, Beiträge zur Physik und Metallographie des Magnesiums, Z. Elektrochem., 37(8-9), pp. 447-459, 1931.
47. P. W. Bakarian and C. H. Mathewson, “Slip and Twinning of Magnesium Single Crystals at Elevated Temperatures, Trans. AIME, 152, pp. 226-254, 1943.
48. E. C. Burke and W. R. Hibbard, Jr., “Plastic Deformation of Magnesium Single Crystals, Trans. AIME, 194, pp. 295-303, 1952.
49. S. S. Hsu and B. D. Cullity, “On the Torsional Deformation and Recovery of Single Crystals, Trans. AIME, 200, pp. 305-312, 1954.
50. H. Conrad and W. D. Robertson, “Effect of Temperature on the Flow Stress and Strain-Hardening Coefficient of Magnesium Single Crystals, Trans. AIME, 209, pp. 503-512, 1957.
51. W. F. Sheely and R. R. Nash., “Mechanical Properties of Magnesium Monocrystals, Trans. Metall. Soc. AIME, 218, pp.416-422, 1960.
52. K. Sugimoto, K. Matsui, T. Okamoto and K. Kishitake, “Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium, Mater. Trans., JIM, 16(10), pp. 647-656, 1975.
53. R. E. Reed-Hill and W. D. Robertson, “Additional Modes of Deformation Twinning in Magnesium, Acta Metall., 5, pp. 717-727, 1957.
54. R. E. Reed-Hill and W. D. Robertson, “Deformation of Magnesium Single Crystals by Nonbasal Slip, Trans. Metall. Soc. AIME, 220, pp. 496-502, 1957.
55. A. Couret and D. Caillard, “An in situ Study of Prismatic Glide in Magnesium-I. The Rate Controlling Mechanism, Acta Metall., 33, pp. 1447-1454, 1985.
56. T. Obara, H. Yoshinga and S. Morozumi, “{1122}(1123) Slip System in Magnesium, Acta Metall., 21, pp. 845-853, 1973.
57. G. S. Rao and Y. V. R. K. Prasad, “Grain Boundary Strengthening in Strongly Textured Magnesium Produced by Hot Rolling, Metall. Trans. A, 13A, pp. 2219-2226, 1982.
58. B. C. Wonsiewicz and W. A. Backofen, “Plasticity of Magnesium Crystals, Trans. Metall. Soc. AIME, 239, pp. 1422-1431, 1967.
59. H. Yoshinaga and R. Horiuchi, “Deformation Mechanisms in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis, Mater. Trans., JIM, 4(1), pp. 1-8, 1963.
60. C. S. Roberts, Magnesium and Its Alloys, John Wiley and Sons, New York, pp. 180, 1960.
61. S. R. Agnew, M. H. Yoo and C. N. Tomé, “Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 49, pp. 4277-4289, 2001.
62. P. W. Flynn, J. Mote and J. E. Dorn, “On the Thermally Activated Mechanism of Prismatic Slip in Magnesium Single Crystals, Trans. Metall. Soc. AIME, 221, pp. 1148-1154, 1961.
63. A. Amadieh, J. Mitchell and J. E. Dorn, “Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium, Trans. Metall. Soc. AIME, 233, pp. 1130-1137, 1965.
64. J. F. Stohr and J. P. Poirier, “Etude en Microscopie Electronique du Glissement Pyramidal {112 ̅2}〈112 ̅3〉 dans le Magnesium, Phil. Mag., 25(6), pp. 1313-1329, 1972.
65. S. R. Agnew, C. N. Tomé, D.W. Brown, T. M. Holden and S. C. Vogel, “Study of Slip Mechanisms in a Magnesium Alloy by Neutron Diffraction and Modeling“, Scripta Mater., 48, pp. 1003-1008, 2003.
66. A. Styczynski, C. Hartig, J. Bohlen and D. Letzig, “Cold Rolling Textures in AZ31 Wrought Magnesium Alloy, Scripta Mater., 50, pp. 943-947, 2004.
67. S. R. Agnew and O. Duygulu, “A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms, Mater. Sci. Forum, 419-422, pp. 177-188, 2003.
68. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M. Holden, S. C. Vogel and C. N. Tomé, “Internal Strain and Texture Evolution during Deformation Twinning in Magnesium, Mater. Sci. Eng. A, 399, pp. 1-12, 2005.
69. M. R. Barnett, “A Taylor Based Description of the Proof Stress of Magnesium AZ31 during Hot Working, Metall. Mater. Trans. A, 34A, pp. 1799-1806, 2003.
70. H. Li, E. Hsu, J. Szpunar, R. Verma and J. T. Carter, “Determination of Active Slip/Twinning Modes in AZ31 Mg Alloy near Room Temperature, J. Mater. Eng. Perform., 16(3), pp. 321-326, 2007.
71. R. von Mises, “Mechanics of Plastic Deformation in Crystals, Z. Angew. Math. Mech., 8, pp. 161-185, 1928.
72. G. W. Groves and A. Kelly, “Independent Slip Systems in Crystal, Philos. Mag., 8, pp. 877-887, 1963.
73. M. H. Yoo, “Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals, Metall. Trans. A, 12, pp. 409-418, 1981.
74. M. R. Barnett, “Twinning and the Ductility of Magnesium Alloys Part II: “Contraction Twins, Mater. Sci. Eng. A, 464, pp. 8-16, 2007.
75. L. Jiang and J. J. Jonas, “Effect of Twinning on the Flow Behavior during Strain Path Reversals in Two Mg (+Al, Zn, Mn) Alloys, Scripta Mater., 58, pp. 803-806, 2008.
76. E. Schmid and W. Boas, Kristallplastizität, Julius Springer, Berlin, 1935.
77. S. R. Agnew and O. Duygulu, “Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B, Int. J. Plasticity, 21, pp. 1161-1193, 2005.
78. X. Y. Lou, M. Li, R. K. Boger, S. R. Agnew and R. H. Wagoner, “Hardening Evolution of AZ31B Mg Sheet, Int. J. Plasticity, 23, pp. 44-86, 2007.
79. S. Kleiner and P. J. Uggowitzer, “Mechanical Anisotropy of Extruded Mg-6%Al-1%Zn Alloy, Mater. Sci. Eng. A, 379, pp. 258-263, 2004.
80. J. Koike, “Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A, 36A, pp. 1689-1696, 2005.
81. J. Koike, Y. Sato and D. Ando, “Origin of the Anomalous {1012} Twinning during Tensile Deformation of Mg Alloy Sheet, Mater. Trans., JIM, 49(12), pp. 2792-2800, 2008.
82. H. Somekawa and T. Mukai, “Effect of Texture on Fracture Toughness in Extruded AZ31 Magnesium Alloy, Scripta Mater., 53, pp. 541-545, 2005.
83. Y. N. Wang and J. C. Huang, “Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy, Mater. Trans., JIM, 44(11), pp. 2276-2281, 2003.
84. S. B. Yi, H. G. Brokmeier, R. Bolmaro, K. U. Kainer and J. Homeyer, “The Texture Evolutions of Mg Alloy, AZ31, under Uni-Axial Loading, Mater. Sci. Forum, 495-497, pp. 1585-1590, 2005.
85. W. S. Chang, H. J. Kim, J. S. Noh and H. S. Bang, “The Evaluation of Weldability for AZ31B-H24 and AZ91C-F Mg Alloys in Friction Stir Welding, Key Eng. Mater., 321-323, pp. 1723-1728, 2006.
86. J. Liao, N. Yamamoto and K. Nakata, “Effect of Dispersed Intermetallic Particles on Microstructural Evolution in the Friction Stir Weld of a Fine-Grained Magnesium Alloy, Metall. Mater. Trans. A, 40A, pp. 2212-2219, 2009.
87. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling and W. H. Bingel, “Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 29A, pp. 1955-1964, 1998.
88. W. D. Lockwood and A. P. Reynolds, “Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior, Mater. Sci. Eng. A, 339, pp. 35-42, 2003.
89. F. Gratecap, M. Girard, S. Marya and G. Racineux, “Exploring Material Flow in Friction Stir Welding: Tool Eccentricity and Formation of Banded Structures, Int. J. Mater. Form., 4, pp. 1-9, 2011.
90. D. K. Matlock, F. Zia-Ebrahimi and G. Krauss, “Structure Properties, and Strain Hardening of Dual-Phase Steels, In: G. Krauss (Ed.), Deformation, Processing, and Structure, ASM, Metals Park, Ohio, pp. 47-87, 1984.
91. R. E. Reed-Hill, “Role of Deformation Twinning in Determining the Mechanical Properties of Metals, In: R. E. Reed-Hill (Ed.), The Inhomogeneity of Plastic Deformation, ASM, Metals Park, Ohio, pp. 285-311, 1973.
92. M. R. Barnett, Z. Keshavarz, A. G. Beer and D. Atwell, “Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 52, pp. 5093-5103, 2004.
93. L. Jiang, J. J. Jonas, A. A. Luo, A. K. Sachdev and S. Godet, “Influence of {1012} Extension Twinning on the Flow Behavior of AZ31 Mg Alloy, Mater. Sci. Eng. A, 445-446, pp. 302-309, 2007.
94. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig and J. Bohlen, “Grain Size Effects on Deformation Twinning in an Extruded Magnesium Alloy Tested in Compression, Scripta Mater., 65, pp. 424-427, 2011.
95. A. Chaderi and M. R. Barnett, “Sensitivity of Deformation Twinning to Grain Size in Titanium and Magnesium, Acta Mater., 59, pp. 7824-7839, 2011.
96. M. R. Barnett, “Twinning and the Ductility of Magnesium Alloys Part I: “Tension Twins, Mater. Sci. Eng. A, 464, pp. 1-7, 2007.
97. F. J. Humphreys and M. Hatherley, “Hot Deformation and Dynamic Restoration, Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, pp. 363-392, 2004.
98. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi, “The Activity of Non-Basal Slip Systems and Dynamic Decovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 51, pp. 2055-2065, 2003.
99. M. M. Myshlyaev, H. J. McQueen, A. Mwembela and E. Konopleva, “Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 337, pp. 121-133, 2002.
100. A. Jäger, P. Lukáč, V. Gärtnerová, J. Bohlen and K. U. Kainer, “Tensile Properties of Hot Rolled AZ31 Mg Alloy Sheets at Elevated Temperatures, J. Alloy. Compd., 378, pp. 184-187, 2004.
101. X. Yang, H. Miura and T. Sakai, “Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation, Mater. Trans., JIM, 44(1), pp. 197-203, 2003.
102. R. S. Mishra and Z.Y. Ma, “Friction Stir Welding and Processing, Mater. Sci. Eng. R, 50, pp. 1-78, 2005.
103. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, “Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy, Acta Mater., 50, pp. 4419-4430, 2002.
104. B. M. Darras, M. K. Khraisheh, F. K. Abu-Farha, M. A. Omar, “Friction Stir Processing of Commercial AZ31 Magnesium Alloy, J. Mater. Process. Technol., 191, pp. 77-81, 2007.
105. Y. N. Wang and J. C. Huang, “Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 81, pp. 11-26, 2003.
106. E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B, 64, pp. 747-753, 1951.
107. N. J. Petch, “The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 174, pp. 25-28, 1953.
108. R. W. Armstrong, “Theory of the Tensile Ductile-Brittle Behavior of Polycrystalline H.C.P. Materials, with Application to Beryllium, Acta Metall., 16, pp. 347-355, 1968.
109. R. W. Armstrong, I. Codd, R. M. Douthwaite and N. J. Petch, “The Plastic Deformation of Polycrystalline Aggregates, Philos. Mag., 7, pp. 45-58, 1962.
110. W. Yuan, S. K. Panigrahi, J. Q. Su and R. S. Mishra, “Influence of Grain Size and Texture on Hall-Petch Relationship for a Magnesium Alloy, Scripta Mater., 65, pp. 994-997, 2011.
111. A. S. Argon, “Stability of Plastic Deformation, In: R. E. Reed-Hill (Ed.), The Inhomogeneity of Plastic Deformation, ASM, Metals Park, Ohio, pp. 161-189, 1973.
112. M. A. Meyers, O. Vöhringer and V.A. Lubarda, “The Onset of Twinning in Metals: a Constitutive Description, Acta Mater., 49, pp. 4025-4039, 2001.
113. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki and K. Maruyama, “Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K, Mater. Trans., JIM, 44(4), pp. 445-451, 2003.
114. N. Ono, K. Nakamura and S. Miura, “Influence of Grain Boundaries on Plastic Deformation in Pure Mg and AZ31 Mg Alloy Polycrystals, Mater. Sci. Forum, 419-422, pp. 195-200, 2003.
115. A. Jain and S. R. Agnew, “Modeling the Temperature Dependent Effect of Twinning on the Behavior of Magnesium Alloy AZ31B Sheet, Mater. Sci. Eng. A, 462, pp. 29-36, 2007.
116. Z. Trojanová, Z. Drozd, P. Lukáč, K. Máthis, H. Ferkel and W. Riehemann, “Thermally Activated Processes in Microcrystalline Mg, Scripta Mater., 42, pp. 1095-1100, 2000.
117. Y. B. Chun and C. H. J. Davies, “Twinning-Induced Anomaly in the Yield Surface of Highly Textured Mg-3Al-1Zn Plate, Scripta Mater., 64, pp. 958-961, 2011.
118. C. J. Lee, J. C. Huang and X. H. Du, “Using Multiple FSP Passes to Cure Onion Splitting of Mg Alloys Deformed at Elevated Temperatures, Mater. Trans., JIM, 48(4), pp. 780-786, 2007.
119. Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima, “Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy, Mater. Trans., JIM, 44(4), pp. 468-475, 2003.
120. R. Xin, B. Li, A. Liao, Z. Zhou and Qing Liu, “Correlation Between Texture Variation and Transverse Tensile Behavior of Friction-Stir-Processed AZ31 Mg Alloy, Metall. Mater. Trans. A, 43A, pp. 2500-25089, 2012.
121. M. Pareek, A. Polar, F. Rumiche and J. E. Indacochea, “Metallurgical Evaluation of AZ31B-H24 Magnesium Alloy Friction Stir Welds, J. Mater. Eng. Perform., 16(5), pp. 655-661, 2007.
122. S. Lim, S. Kim, C. G. Lee, S. J. Kim and C. D. Yim, “Tensile Behavior of Friction-Stir-Welded AZ31-H24 Mg Alloy, Metall. Mater. Trans. A, 36A, pp. 1609-1612, 2005.
123. Y. S. Sato, H. Takauchi, S. H. C. Park and H. Kokawa, “Characteristics of the Kissing-Bond in Friction Stir Welded Al Alloy 1050, Mater. Sci. Eng. A, 405, pp. 333-338, 2005.
124. N. Afrin, D. L. Chen, X. Cao and M. Jahazi, “Microstructure and Tensile Properties of Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 472, pp. 179-186, 2008.

W. F. Hosford, “Appendix 1 Angular Relations, The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, New York, pp. 201-218, 1993.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊