跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳科宏
研究生(外文):Ke-HungChen
論文名稱:於304不銹鋼表面以陽極處理製備成長積層及其對氧化鋯塗佈之影響
論文名稱(外文):The formation of growing integration layer (GIL) on 304 stainless steel by anodization and its effects on Zirconia Coating
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-Shyang Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:不銹鋼鈍化膜陽極處理方波脈衝氧化鋯鍍膜
外文關鍵詞:Stainless steelPassive filmsAnodizingSquare wave pulseZirconia coating
相關次數:
  • 被引用被引用:2
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
當陶瓷披覆於金屬材料時,會有熱及機械應力的產生,容易造成陶瓷鍍膜開裂或附著性不佳等問題。為減少該應力,本研究參考成長積層的概念,以陽極處理法於304不銹鋼表面先形成一氧化物層,再進行氧化鋯薄膜的浸鍍,以探討氧化物層與氧化鋯間的接合是否有利於鍍膜品質的改善。
為形成氧化物層,本研究中304不銹鋼是被置於5M H2SO4與5M HNO3之混合酸液中,並施加不同時間(5 min、10 min、20 min)的陽極處理(定電壓或方波脈衝),以促進氧化物層成長,隨後再以浸鍍法披覆氧化鋯薄膜。304不銹鋼經陽極處理與氧化鋯浸鍍後所形成之薄膜,其表面形貌、厚度與組成以及機械特性是以SEM、AFM、XPS、奈米壓痕機及恆電位儀檢測,而電化學性質差異之比較,是於模擬人體液的環境下進行。
表面形貌之分析結果顯示,不銹鋼經陽極處理後可於其表面形成一層多孔性的鉻鐵礦氧化物層,且伴隨著晶界腐蝕的發生;其腐蝕程度隨著陽極處理時間的增長而趨於嚴重。未經陽極處理的304不銹鋼,其表面之氧化鋯薄膜易因熱膨脹係數的差異而產生裂痕;而經陽極處理者,其氧化鋯薄膜是披覆於一層鉻鐵礦氧化物層上,其薄膜開裂情況可因而獲得改善。
藉由開路電位及極化曲線的量測可知,陽極處理所形成的鉻鐵礦氧化物層因其表面粗糙不均,於模擬人體液中未能提供基材較好的保護性,然而此氧化物層比起原本不銹鋼表面上的鈍化膜擁有較高的鉻含量,可提升304不銹鋼抵抗孔蝕發生的能力。在交流阻抗分析中,於相角對頻率圖譜之高頻處出現的第一個時間常數,為代表氧化鋯薄膜產生之電阻電容並聯反應;在低頻處出現的第二個時間常數,則與304不銹鋼在大氣下形成的鈍化層或陽極處理形成的鉻鐵礦氧化膜有關。
奈米壓痕試驗之結果則顯示鉻鐵礦氧化膜之量測硬度值較氧化鋯薄膜與304不銹鋼者為低,也意味著304不銹鋼在經過不同時間的陽極處理(鉻鐵礦氧化層厚度的改變)之後,在不同的壓痕深度下也將呈現不同的硬度。

In ceramics/metal joining and coating, the most challenging and fascinating issue is how to overcome poor adhesion and cracking in the ceramic/metal materials caused from thermal and mechanical stress. There is an attempt that subsequent anodizing of oxide films can have an oxide/oxide joining (zirconia by dip coating) promising support a concept called “growing integration layer [GIL]”. The aim of this study was to characterize the oxide films grown with different thickness and morphology on 304 stainless steel surface for GIL purposes.
The oxide films were prepared on the surface of 304 stainless steel by anodizing (containing constant potential and square wave pulse) was in 5M H2SO4 and 5M HNO3 for 5、10、20 min. The morphology, thickness, composition, corrosion behavior in Hank’s solution and mechanical properties of oxide films and zirconia films were obtained by SEM, AFM, XPS depth profiles, potentiostat and nanoindentation.
The morphology results showed that a porous FeCr2O4 layer and intergranular corrosion was formed on the surface of 304 SS anodized in acidic solution. Both corrosion and roughness got more seriously as a function of anodizing time. Cracks were found when ZrO2 film coated on the 304 SS substrate due to the difference of thermal expansion between film and substrate. However, a non-crack ZrO2 film could be formed, on the surface of FeCr2O4 layer obtained by square wave pulse, with proper processing time.
In terms of electrochemical measurements, the FeCr2O4 film was less protective from Hank’s solution than the naturally grown passive film because of its rougher surface, but it increased the pitting resistance to corrosion, which was attributed Cr enrichment in the film. In phase angle plots of impedance spectra, a first time constant revealing at high frequency represented a parallel reaction of resistors and capacitors from the formation of ZrO2 film, and a second time constant at low frequency associated with the passive layer or FeCr2O4 film.
Nanoindentation measurements indicated that the hardness values of FeCr2O4 film was smaller than ZrO2 film or 304 stainless steel. It means that the 304 stainless steel with different processing times of anodizing (thickness changes of FeCr2O4 film layer at the ZrO2 film / 304 SS substrate interface) would show the varied hardness in different indentation depth.

摘要 ......................................................................................................... I
Abstract .................................................................................................. III
誌謝.......................................................................................................... V
目錄........................................................................................................ VII
List of tables ............................................................................................ X
List of figures ......................................................................................... XI
一、 緒論 ........................................................................................... 1
1.1 前言 .............................................................................................. 1
1.2 研究目的 ..................................................................................... 3
二、 理論基礎與文獻回顧 ................................................................ 6
2.1 SUS300系不銹鋼簡介 .................................................................. 6
2.2 金屬的鈍態與不銹鋼的鈍化行為.............................................. 10
2.3 極化(polarization)現象................................................................ 16
2.4 混合電位理論 ........................................................................... 19
2.5 不銹鋼表面之發色膜形成程序 ................................................. 21
2.6 電化學測試方法 - 動電位極化曲線....................................... 26
2.7 電化學測試方法 - 交流阻抗分析........................................... 28
2.8 成長積層GIL ( growing integration layer )簡介 ....................... 32
2.9 聚合錯合物溶液 ( polymer complex solution, PCS)法簡介 .... 36
三、 研究方法與步驟 ..................................................................... 38
3.1 實驗流程 .................................................................................... 38
3.1.1試片前處理............................................................................ 38
3.1.2實驗參數設定與陽極處理.................................................... 38
3.1.3氧化鋯薄膜製備.................................................................... 39
3.2 藥品與儀器設備.......................................................................... 42
3.3 表面微結構形貌分析.................................................................. 43
3.4 化學鍵結與縱深成分分析.......................................................... 45
3.5 電化學腐蝕測試.......................................................................... 47
3.5.1參考電極(Reference Electrode) ............................................ 47
3.5.2開路電位 (Open Circuit Potential) ....................................... 47
3.5.3動電位極化曲線 ( Potentiodynamic Polarization Curves)... 48
3.5.3交流阻抗分析 (AC Impedance Analysis) ............................ 48
3.6 奈米壓痕試驗 ( Nanoindentation Test)...................................... 49
四、 結果與討論 ............................................................................... 51
4.1不銹鋼於酸液內之電化學性質探討........................................... 51
4.2陽極處理製備氧化膜之形成程序............................................... 54
4.3表面形貌分析............................................................................... 59
4.4氧化膜厚度與組成分析............................................................... 68
4.5氧化鋯薄膜之形成程序............................................................... 76
4.6氧化鋯薄膜之表面形貌與厚度分析........................................... 78
4.7 電化學性質分析.......................................................................... 84
4.7.1 開路電位量測....................................................................... 84
4.7.2 動電位極化曲線................................................................... 85
4.7.3 交流阻抗測試....................................................................... 94
4.8 奈米壓痕測試............................................................................ 97
五、 結論 ....................................................................................... 104
六、 參考文獻 ............................................................................... 106

[1] S. Haupt, H.H. Strehblow, A combined surface analytical and
electrochemical study of the formation of passive layers on Fe/Cr
alloys in 0.5 M H2SO4, Corrosion Science 37 (1995) 43–54.
[2] Go Okatmot, Passive film of 18-8 stainless steel structure and its
function, Corrosion Science 13(1973) 471–489.
[3] N. Sato, An overview of the passivity of metals, Corrosion Science 31 (1990) 1–19.
[4] 中國礦冶工程協會, 財團法人中鋼集團教育基金會, 鋼鐵材料設 計與應用 (2007).
[5] W.E. Delport, J.P. Roux, The surface segregation and oxidation of chromium and palladium in high chromium stainless steel, Corrosion Science 26 (1986) 407–417.
[6] V. Maurice, WP Yang and P. Marcus. J. Electrochem. Soc 143 (1996) 1182.
[7] R. Conrrado, N. Bocchi, R.C. Rocha, S.R. Biaggio, Corrosion resistance of colored films grown on stainless steel by the alternating potential pulse method, Electrochim Acta 48 (2003) 2417–2424.
[8] R.C. Furneaux, G.E. Thompson, G.C. Wood, The coloured film formed on stainless steel in hot chromic/sulphuric acid solution, Corrosion Science 21 (1981) 23–29.
[9] Petra Keller, Hans-Henning Strehblow, XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4, Corrosion Science 46 (2004) 1939–1952.
[10] C. Duret-Thual, D. Costa, The role of thiosulfates in the pitting corrosion of Fe-17Cr alloys in neutral chloride solution: Electrochemical and XPS study, Corrosion Science 39 (1997) 931–933.
[11] A. Atrens, B. Baroux, M. Mantel, J. Electrochem, The secondary passive film for type 304 stainless steel in 0.5 M H2SO4, Electrochem. Soc 144 (1997) 3697–3704.
[12] L.J. Oblonsky, A.J. Davenport, R.C. Newman, M.P. Ryan, In situ X-ray absorption near edge structure study of the potential dependence of the formation of the passive film on iron in borate buffer, Electrochem. Soc 144 (1997) 2398–2404.
[13] M. Bojinov, I. Betova, The stability of the passive state of iron–chromium alloys in sulphuric acid solution, Corrosion Science 41 (1999) 1557–1584.
[14] D. Costa, W.P. Yang, P. Marcus, XPS analysis of passive films formed on chromium in acidic solution without and with chloride ions, Material Science Forum 185–188 (1995) 325–336.
[15] K. Suganuma, T. Okamoto, M. Koizumi, M. Shimada, Am.Ceram,
Acoustic emission from ceramic/metal joints on cooling, Material Science and Technology 2 (1986) 1060–1064.
[16] Y. Yunzhi, K. Kyo-Han, L. Joo, Ong, A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying, Biomaterals 26 (2005) 327–337.
[17] L. Xuanyong, K.C. Paul, D. Chuanxian, Surface modification of
titanium, titanium alloys, and related materials for biomedical
applications, Material Science 47 (2004) 49–121.
[18] Naota Sugiyama, Masahiro Yoshimura, Novel Growing Integration
Layer (GIL) method for joining/bonding of metallic and ceramic
materials, and its applications for bulk metallic glasses with high
bioactivities, Materials Science and Engineering :B 161 (2009)
31–35.
[19] T.E. Evans, Film formation on stainless steel in a solphuric acid, Corrosion Science 17 (1977) 105–124.
[20] Piconi C, Maccauro G, Zirconia as a ceramic biomaterial, Biomaterials 20 (1999)1–25.
[21] Shinji Fujimoto, Kiyoshi Tsujino, Toshio Shibata, Growth and properties of Cr-rich thick and porous oxide films on Type 304 stainless steel formed by square wave potential pulse polarisation, Electrochimica Acta 47 (2001) 543–551
[22] Junxi Zhang, Jun Yuan, Yinan Qiao, Chunan Caoc, The corrosion and passivation of SS304 stainless steel under square wave electric field, Materials Chemistry and Physics 79 (2003) 43–48.
[23] J. Zhang, L. Yan, Y. Qiao, C. Cao, G. Zhou, A green process for
coloring stainless steel, Trans Inst Met Finish 83 (2005) 95.
[24] The Stainless Steel Family. Retrieved (2009).
[25] 黃慶淵, 鋼鐵產品種類與應用-不鏽鋼.
[26] 袁成華, 鈦鉬合金熱處理後疲勞性質之研究 (2005) 16.
[27] 柯賢文,腐蝕及其防治,全華科技圖書(1998) 26–257.
[28] Evans TE, Hart AC, Skedgell AN. The nature of the film on colored stainless steel, Trans Inst Met Finish 51 (1973) 108–112.
[29] H.H.Uhlig and R.Revie, Corrosion and Corrosion Control, 3rd ed., Wiley, New York (1985).
[30] J. Kriger, Passivity of metals – a materials science perspective, International Materials Reviews 3 (1988) 113.
[31] R. P. Frankenthal, Passivation of iron in borate buffer solution, Eletrochimca. Acta 16 (1971) 1845.
[32] 孫文良, 陽極處理對304 不銹鋼之耐蝕性研究,國立成功大學礦
冶及材料科學研究所碩士論文 (1992).
[33] NCKU Micro-Nano Technology Center/Southern Region MEMS
Center
[34] Kerber SJ, Tverberg J. Stainless steel surface analysis. Advanced Materials and Processes 158 (2000) 33–36.
[35] 田福助,電化學理論與應用,新科技書局.
[36] 楊聰仁,腐蝕電化學分析,腐蝕電化學實驗.
[37] 儀測科技國際股份有限公司, 電化學阻抗頻譜的基本原理
(2009).
[38] 蔡文達, Electrochemical impedance spectroscopy (EIS).
[39] 賴耿陽, 陶瓷與金屬接合工學, 復漢出版社 (1999).
[40] Masato Kakihana, Masahiro Yoshimura, Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method, Electrochem. Soc 72 (1999) 1427–1443.
[41] P. Stefanov, D. Stoychev, XPS and SEM studies of chromium oxide
films chemically formed on stainless steel 316 L, Materials
Chemistry and Physics 65 (2000) 212–215

[42] S.K. Yen*, M.J. Guo, H.Z. Zan, Characterization of electrolytic ZrO2 coating on Co-Cr-Mo implant alloys of hip prosthesis, Biomaterials 22 (2001) 125–133.
[43] McLean JW, Sced IR. Bonding of dental porcelain to metals: II. The base-metal alloy/porcelain bond. J British Ceram Soc 72 (1973) 235–238.
[44] Carter JM, AL-Mudafar J, Sorensen SE. Adherence of a nickel Chromium alloy and porcelain. J Prosthet Dent 41 (1979) 167–172.
[45] Bowers JE, Vermilyea SG, Griswold WH, The effect of metal conditioners on porcelain alloy bond strength. J Prosthet Dent (1985) 201–203.
[46] M. P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, U.S. Patent No. 3330697, July 11 (1967).
[47] Masahiro Yoshimura, Takamasa Onoki, Mikio Fukuhara, Xinmin
Wang , Kazuhiro Nakata, Toshio Kuroda, Formation of grow
ingintegrated layer [GIL] between ceramics and metallic materials
for improved adhesion performance, Materials Science and
Engineering 148 (2008) 2–6.
[48] 林麗娟,田大昌, 工業材料雜誌,181期 1月(2002).
[49] K. W. Nam and K. B. Kima , Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors, The Electrochem. Soc 153 (2006) 81–88.
[50] English Wikpedia, article “X-ray photoelectron spectroscopy
(2009).
[51] L. D. Vazquez-Santoyo, J. J. Perez-Bueno, Origin of interference colors on austenitic stainless steel, Inorganic Materials 41 (2005) 955–960.
[52] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Material Research 7 (1992) 1564–1583.
[53] Shigeaki Tanaka, Nobuyoshi Hara, Katsuhisa Sugimoto, Corrosion characteristics of Fe2O3-Cr2O3 artificial passivation films under potentiostatic control, Materials Science and Engineering 198 (1995) 63-69.
[54] S.K. Yen, T.Y. Huang, Characterization of the electrolytic ZrO2 coating on Ti-6AI-4V, Materials Chemistry and Physics 56 (1998) 214-221.
[55] S. Wernick, R. Pinner, P.G. Sheasby, The surface treatment and finishing aluminum and its alloys, Publications Ltd, Teddington, (1987) 331.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top