跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 14:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁博竣
研究生(外文):Bo-JyunLiang
論文名稱:濺鍍摻雜鈦之二氧化鉿高介電閘極氧化層之研究
論文名稱(外文):Exploration of Ti-doped HfO2 high-k dielectrics using reactive sputtering
指導教授:張高碩
指導教授(外文):Kao-Shuo Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:72
中文關鍵詞:二氧化鉿高介電材料磁控濺鍍
外文關鍵詞:HfO2high-k materialmagnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本實驗選用了二氧化鉿靶材做為金氧半結構中的介電材料,利用反應性射頻磁控濺鍍法於矽基板上成長二氧化鉿薄膜,並且利用微影製程在二氧化鉿薄膜上鍍上氮化鉭電極而形成金氧半結構並且分別探討不同的二氧化鉿結晶性質對於其電性的影響。
不同結晶性質可以由調控濺鍍壓力及氣體比例來改變,並且利用X光繞射儀得知所成長之二氧化鉿薄膜的結晶性質,以及使用掃描式電子顯微鏡來觀察其表面形態以及晶粒大小。
由實驗結果得到,當濺鍍壓力提升時,二氧化鉿薄膜的結晶性會變差而形成比較接近非晶質的結構,而不同的氣體比例對於結晶性質的影響不如預期的大。
此外,藉由還原氣體退火後電性量測的結果顯示出氧氣壓力為50%時,濺鍍壓力為15 mTorr的情況下所製備的二氧化鉿薄膜有最高的介電常數14.8。之後藉由摻雜50%的二氧化鈦來提高其介電常數,結果顯示其介電常數提高至17.8。以二氧化鉿作為金-氧-半結構介電層薄膜的電性質有待進一步的研究。

The HfO2-based thin films are deposited on the silicon substrate as the dielectric layer of the MOS structure by the reactive rf magnetron sputtering. The TaN metal gate is chosen as the top electrode using the lithography process for pattering. The crystallinity of HfO2 made different conditions is studied. The corresponding dielectric constants are extracted.
By tuning the working pressures and the flow ratios of argon and oxygen, the different crystallinity of HfO2 is achieved. XRD and SEM are used to characterize the crystallinity, morphology, and grain size of the HfO2 thin films.
We observed the crystallinity decreases while working pressure increases, however, the influence of the flow ratios of argon and oxygen on the crystallinity of HfO2 is not so detectable at a fixed working pressure.
The dielectric constant of the HfO2 thin films deposited at 15 mTorr, Ar (15 sccm) and O2 (15 sccm) shows the highest (~ 14.8), which is comparable with the literature values. To further increase the dielectric constant, 50% of TiO2 is doped into HfO2. From our analysis, the dielectric constant is improved to 17.8 without degrading the leakage current. More efforts are needed for systemically studying the dielectric properties of Ti-HfO2 as a function of the contents of TiO2.
Abstract I
摘要 II
Acknowledge III
Content IV
Table content VII
Figure content VIII
Chapter 1 Preface 1
1-1 Introduction 1
1-2 Motivation 1
Chapter 2 Fundamentals 7
2-1 High-k material 7
2-1-1 The demands for High-k materials 7
2-1-2 Properties of hafnium dioxide (HfO2) 8
2-2 MOS fundamentals 8
2-2-1 MOS structure 8
2-2-2 The evolution of MOS 9
2-2-3 Behavior of a MOS capacitor 10
2-3 Sputtering 12
2-3-1 Plasma 12
2-3-2 Magnetron sputtering 12
2-3-3 Reactive sputtering 13
Chapter 3 Experimental 19
3-1 Fabrication of MOS devices 19
3-1-1 Preparation of substrates 19
3-1-2 Substrate cleaning process 19
3-1-3 Sputtering of HfO2 dielectric thin film 20
3-1-4 Ti-doped HfO2 21
3-1-5 Lithography process 21
3-1-6 Forming gas annealing 23
3-2 Characterizations 24
3-2-1 Thickness measurement 24
3-2-2 X-ray Diffraction 24
3-2-3 Scanning electron microscopy 24
3-2-4 C-V measurements 25
3-2-5 I-V measurements 25
Chapter 4 Results and discussion 37
4-1 The influence of working pressure 37
4-1-1 The thickness of HfO2 thin films 37
4-1-2 The crystallinity of HfO2 38
4-1-3 The grain size of HfO2 39
4-1-4 The electrical properties of HfO2: the C-V characteristics 40
4-1-5 The electrical properties of HfO2: the I-V characteristics 41
4-2 The influence of the Ar/O2 42
4-2-1 The thickness of HfO2 42
4-2-2 The crystallinity of HfO2 42
4-2-3 The particle sizes of HfO2 43
4-2-4 The grain size of HfO2 43
4-3 TiO2 doped HfO2 43
Chapter 5 Conclusions 64
Chapter 6 Future work 66
References 67

1G. Baccarani, M. R. Wordeman, and R. H. Dennard, Electron Devices, IEEE Transactions on 31 (4), 452 (1984).
2J. Robertson, Rep. Prog. Phys 69, 327 (2006).
3R. Sharma, A. Kumar, and J Anthony, JOM Journal of the Minerals, Metals and Materials Society 53 (6), 53 (2001).
4G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys 89, 5243 (2001).
5B. Brar, G. D. Wilk, and A. C. Seabaugh, Applied Physics Letters 69 (18), 2728 (1996).
6P. K. Roy and I. C. Kizilyalli, Applied Physics Letters 72 (22), 2835 (1998).
7I. C. Kizilyalli, R. Y. S. Huang, and R. K. Roy, Electron Device Letters, IEEE 19 (11), 423 (1998).
8Q. Lu, P. Donggun, A. Kalnitsky, C. Chang, C.-C. Cheng, S.-P. Tay, T.-J. King, and C. Hu, Electron Device Letters, IEEE 19 (9), 341 (1998).
9G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Applied Physics Letters 73 (11), 1517 (1998).
10Y. Nishioka, H. Shinriki, and K. Mukai, Journal of Applied Physics 61 (6), 2335 (1987).
11C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Materials Science and Engineering: R: Reports 22 (6), 269 (1998).
12R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y. H. Wong, R. B. van Dover, J. R. Kwo, and A. M. Sergent, Journal of Applied Physics 88 (2), 850 (2000).
13K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, Applied Physics Letters 76 (10), 1324 (2000).
14R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81 (14), 3014 (1998).
15Z. Yu, J. Ramdani, J. A. Curless, J. M. Finder, C. D. Overgaard, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, J. R. Conner, and V. S. Kaushik, Banff (Canada), 2000 (unpublished).
16J. Robertson, Raleigh, NC (USA), 2000 (unpublished).
17S. Choi, M. Cho, H. Hwang, andJ.-W. Kim, Journal of Applied Physics 94 (8), 5408 (2003).
18M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R. J. Luyken, W. Rösner, M. Grieb, and L. Risch, Solid-State Electronics 49 (5), 716 (2005).
19Y.-N. Tan, W. K. Chim, B.-J. Cho, and W.-K.Choi, Electron Devices, IEEE Transactions on 51 (7), 1143 (2004).
20A. P. Ehiasarian, J. G. Wen, and I. Petrov, Journal of Applied Physics 101 (5), 054301 (2007).
21D. W. Stacy and D. R. Wilder, Journal of the American Ceramic Society 58 (7-8), 285 (1975).
22K. Lehovec, The Journal of Chemical Physics 21 (7), 1123 (1953).
23W. D. Kingery, Journal of the American Ceramic Society 57 (1), 1 (1974).
24S. Maikap, T. Y. Wang, P. J. Tzeng, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang, and M. J. Tsai, Applied Physics Letters 90 (26), 262901 (2007).
25Y.-C. Yeo, T.-J. King, and C. Hu, Journal of Applied Physics 92 (12), 7266 (2002).
26L.B. Pankratz, R.V. Mrazek, and United States. Bureau of Mines, Thermodynamic Properties of Elements and Oxides. (U.S. Department of the Interior, Bureau of Mines, 1982).
27M. Balog, M. Schieber, M. Michman, and S. Patai, Thin Solid Films 47 (2), 109 (1977).
28S. H. Lo, D. A. Buchanan, and Y. Taur, IBM Journal of Research and Development 43 (3), 327 (1999).
29J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett. 85 (6), 1298 (2000).
30S. Tang, Robert M. Wallace, A. Seabaugh, and D. K. smith, Applied Surface Science 135 (1–4), 137 (1998).
31S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, Electron Device Letters, IEEE 18 (5), 209 (1997).
32P. F. Carcia, R. S. McLean, M. H. Reilly, and Jr G. Nunes, Applied Physics Letters 82 (7), 1117 (2003).
33R. Harkewicz, P. J. Billquist, J. P. Greene, Jr J. A. Nolen, and R. C. Pardo, Review of Scientific Instruments 66 (4), 2883 (1995).
34S. Berg, T. Larsson, C. Nender, and H. Blom, Journal of Applied Physics 63 (3), 887 (1988).
35D. G. Teer, Surface and Coatings Technology 39–40, Part 2 (0), 565 (1989).
36S. Schiller, U. Heisig, C. Korndörfer, G. Beister, J. Reschke, K. Steinfelder, and J. Strümpfel, Surface and Coatings Technology 33 (0), 405 (1987).
37G. Lemperiere, Vide-Sci. Techn. Appl. 40 (229), 549 (1985).
38G. Lemperière and J. M. Poitevin, Thin Solid Films 111 (4), 339 (1984).
39A. H. Eltoukhy, B. R. Natarajan, J. E. Greene, and T. L. Barr, Thin Solid Films 69 (2), 229 (1980).
40F. Shinoki and A. Itoh, Journal of Applied Physics 46 (8), 3381 (1975).
41K. Onishi, K.-C. Seok, C. Rino, H.-J. Cho, S. Gopalan, R. E. Nieh, S. A. Krishnan, and J. C. Lee, Electron Devices, IEEE Transactions on 50 (2), 384 (2003).
42T. Hori, Electron Devices, IEEE Transactions on 37 (9), 2058 (1990).
43G. Groeseneken, H. E. Maes, N. Beltran, and R. F. D. Keersmaecker, Electron Devices, IEEE Transactions on 31 (1), 42 (1984).
44Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, Applied Physics Letters 81 (3), 562 (2002).
45T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18 (6), 3572 (2000).
46Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, Langmuir 12 (16), 4033 (1996).
47Semiconductor Industry Association, National technology roadmap for semiconductors. (SIA, 1997).
48 C. Ye, H. Wang, J. Zhang, Y. Ye, Y. Wang, B.-Y. Wang, and Y.-C. Jin, Journal of Applied Physics 107 (10), 104103 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊