跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧祈鳴
研究生(外文):Chi-MingLu
論文名稱:矽化鈷奈米線成長與特性之研究
論文名稱(外文):Growth and characterization of cobalt silicide nanowires
指導教授:呂國彰
指導教授(外文):Kuo-Chang Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:矽化鈷化學氣相沉積鐵磁性場發射
外文關鍵詞:cobalt silicideChemical Vapor Deposition (CVD)ferromagnetismfield emission
相關次數:
  • 被引用被引用:1
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用化學氣相沉積法(Chemical Vapor Deposition (CVD)),於矽(100)基板上成長矽化鈷奈米線,並研究矽化鈷奈米線之成長因素與其物理性質的探討。為了瞭解影響矽化鈷奈米線生成之因素,將從矽(100)基板溫度、氣體流量及成長壓力等三大方向,觀察這些因素如何影響矽化鈷奈米線的生成及其形貌。其結果會發現當基板溫度為850~880℃時, CoSi奈米線最容易生成。當基板溫度為880~900℃時,則以Co2Si奈米線生成為主。氣體流量越小,在溫度為850~880℃的矽基板上CoSi奈米線生長顯著且茂密。CoSi奈米線在成長壓力為500torr下成長最為顯著。
基板溫度為850~880℃所生長之CoS奈米線具有10~20nm厚的二氧化矽層包覆於單晶CoSi奈米線外層;基板溫度為880~900℃所生長之奈米線為單晶Co2Si奈米線。矽化鈷(CoSi)為反磁性,但經過磁性分析後,會發現矽化鈷(CoSi)奈米線為鐵磁性,其原因為矽化鈷在一維結構下,表層有未配對完整的鈷原子,導致矽化鈷奈米線呈現鐵磁性。在場發射量測上,矽化鈷具有較好的場發射特性,可以被拿來做為場發射材料。

In this work, cobalt silicide nanowires were synthesized by CVD processes on Si(100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si(100) substrates, the gas flow rate and the pressure of the reaction were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single crystal CoSi nanowires were grown on 850~880℃ substrates at a lower gas flow rate, while single crystal Co2Si nanowires were grown on 880~900℃ substrates. The crystal structure and growth direction were identified and the surface oxide was discussed as well. Due to the reduced coordination of the surface cobalt atoms, CoSi nanowires grown here were found to be ferromagnetic, which is different from its behavior in bulk. Also, field emission measurements show that the CoSi nanowires were good field emission materials.
摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 簡介與研究目的 1
第二章 理論基礎 4
2-1 金屬矽化物 4
2-2 矽化物奈米線製備方法 7
2-2-1 矽化矽奈米線法 7
2-2-2 傳遞矽至金屬薄膜合成法 9
2-2-3 傳遞金屬供應源至矽基板合成法 10
2-2-3-1 氣體金屬 10
2-2-3-2 金屬鹵化物 12
2-2-4 同時傳遞矽與金屬原料合成法 12
2-2-4-1 化學氣相傳遞法(CVT) 12
2-2-4-2 化學氣相沉積法(CVD) 13
2-3 矽化鈷奈米線 15
2-3-1 矽化鈷簡介 15
2-3-2 矽化鈷奈米線的製備 16
2-3-2-1 化學氣相蒸鍍法-過渡金屬鹵化物[29] 16
2-3-2-2 化學氣相沉積法 – 過度金屬錯合物[30] 20
2-3-2-3 鈷薄膜上成長CoSi奈米線[31] 23
第三章 實驗方法 26
3-1 矽化鈷奈米線的製備 26
3-1-1 試片準備 26
3-1-2 矽化鈷奈米線製備 - 化學氣相蒸鍍法 27
3-2 實驗分析 30
3-2-1 表面型態與結構分析 30
3-2-1-1 掃描式電子顯微鏡 30
3-2-1-2 穿透式電子顯微鏡[33] 33
3-2-2 X光繞射分析儀 35
3-2-3 磁性量測 35
3-2-4 場發射量測 37
第四章 結果與討論 40
4-1 不同成長參數對矽化鈷奈米線型態之影響 40
4-1-1 不同的基板溫度[A、B、C、D] 40
4-1-2 不同的成長壓力[E、F、G] 50
4-1-3 不同的氣體流量[H、I、J、K] 52
4-2 矽化鈷奈米線之成長機制 56
4-2-1 CoSi奈米線 56
4-2-2 Co2Si奈米線 60
4-3 矽化鈷奈米線的磁性量測 62
4-4 場發射量測 65
第五章 結論 69
第六章 未來展望 70
參考文獻 71

1.Yung-Chen Lin, Kuo-Chang Lu, Wen-Wei Wu, Jingwei Bai, Lih J. Chen, and K. N. Tu, “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures and nanodevices, Nano Lett, 8(3): p. 913-918.(2008)

2.Andrew L. Schmitt, Jeremy M. Higgins, Jeannine R. Szczech and Song Jin, “Synthesis and applications of metal silicide nanowires, Journal of Materials Chemistry, 20(2): p. 223-235.(2010)

3.D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood,“A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5μm, Nature, 387: p. 686-688. (1997)

4.J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, “An investigation of the optical constants and band gap of chromium disilicide,Journal of Applied Physics , 63: p. 839-844. (1988)

5.D.M. Rowe,“CRC Handbook of Thermoelectric,CRC Press.(1994)

6.G. Aeppli and J.F. DiTusa , Mater. Sci, 63: p. 119-124. (1999)

7.P.S. Riseborough,“Heavy fermion semiconductors,“ Adv. Phys, 49: p. 257-320. (2000)

8.C. Pfleiderer, D.Reznik, L. Pintschovius, H. von Lohneysen, M.Garst and A. Rosch, “Partial order in the non-Fermi-liquid phase of MnSi, Nature, 427: p. 227-231. (2004)

9.C. Pfleiderer, S.R. Julian and G.G. Lonzarich, “Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets,Nature, 414: p. 427-430. (2001)

10.N. Manyala, Y.S., J. F. Ditusa, G. Aeppli, D. P. Young and Z. Fisk,“Large anomalous Hall effect in a silicon-based magnetic semiconductor,Nature Materials, 3: p. 255-262.( 2004)

11.N. Manyala, Y.S., J. F. DiTusa, G. Aeppli, D. P. Young and Z. Fisk, “Magnetoresistance from quantum interference effects in ferromagnets,Nature, 404: p. 581. (2000)

12.A. L. Schmitt, M.J.B., D. Schmeisser, F. J. Himpsel and S. Jin,“Synthesis and properties of single-crystal FeSi nanowires,Nano Lett, 6: p. 1617-1621. (2006)

13.A. L. Schmitt, L.Z., D. Schmeier, F. J. Himpsel and S. Jin, “ Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-Source Precursor,J. Phys. Chem, 110: p. 18142-18146. (2006)

14.A. L. Schmitt, J.M.Higgins and S.Jin, “ Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1-xCoxSi Alloy Nanowires,Nano Lett, 8: p. 810-815. (2008)

15.J. M. Higgins, A. L. Schmitt, I. A. Guzei and S. Jin, “ Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder PhaseJ. Am. Chem. Soc, 130: p. 16086-16094. (2008)

16.J. R. Szczech, A. L. Schmitt, M. J. Bierman and S. Jin,“ Single-Crystal Semiconducting Chromium Disilicide Nanowires Synthesized via Chemical Vapor Transport,Chem. Mater., 19: p. 3238-3243. (2007)

17.Y.P. Song, A. L. Schmitt and S.Jin,“Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,Nano Lett, 7: p. 965-969. (2007)

18.Y.P. Song and S. Jin., “Synthesis and properties of single-crystal beta(3)-Ni3Si nanowires,Appl. Phys. Lett, 60: p. 173122.( 2007)

19.H. Okamoto and T.B. Massalski,“ Bull. Alloy Phase Diag,. 4: p. 190-198. (1983)

20.O. Kubaschewsk,“In Phase Diagrams of Binary Iron Alloys, p. 380-381. (1993)

21.Y. Wu, J.Xiang, C. Yang, W. Lu and C. M. Lieber,“Single crystal metallic nanowires and metal/semiconductor nanowire heterostructures,Nature, 430: p. 61-65. (2004)

22.Kuo-Chang Lu, Wen-Wei Wu., Han-Wei Wu, Carey M. Tanner, L.J.C. Jane P. Chang, and K. N. Tu,“In-situ control of atomic-scale Si layer with huge strain in the nano-heterostructure NiSi/Si/NiSi through point contact reaction,Nano Lett, 7(8): p. 2389-2394. (2007)

23.Z. Liu, H.Zhang, L. Wang and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil,Nanotechnology, 19: p. 375602. (2008)

24.K. Yamamoto, H.Kohno, S. Takeda and S. Ichikawa, “Fabrication of Iron Silicide Nanowires from Nanowire Templates,Appl. Phys. Lett., 89: p. 083107.( 2006)

25.B. Liu, Y. Wang, S. Dilts, T. S. Mayer and S. E. Mohney, “Silicidation of Silicon Nanowires by Platinum,Nano Lett, 7: p. 818-824. (2007)

26.Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, and C. J. Tsai, “Line and two-dimensional fractal analysis of micrographs obtained by atomic force microscopy of surface-immobilized oligonucleotide nano-aggregates,Applied Physics Letters, 87(22): p. 223113. (2005)

27.L. Ouyang, E.S.Thrall , M. M. Deshmukh and H. Park,“Vapor phase synthesis and characterization of ε-FeSi nanowires,Adv. Mater., 18: p. 1437-1440. (2006)

28.S. Zhou, X. Liu, Y. Lin and D. Wang, “Spontaneous growth of highly conductive two-dimensional single crystalline TiSi2 nanonets,Angew. Chem., 47: p. 7681-7684. (2008)

29.Kwanyong Seo, Sunghun Lee, Hana Yoon, Juneho In, Kumar S. K. Varadwaj, Younghun Jo, Myung-Hwa Jung, Jinhee Kim, and Bongsoo Kim, “Composition-tuned ConSi nanowires: location-selective simultaneous growth along temperature gradient,ACSNANO, 3(5): p. 1145-1150. (2009)

30.Andrew L. Schmitt, L.Z., Dieter Schmeier, F. J. Himpsel, and Song Jin, “Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor,The journal of Physical Chemisty B letters, (110): p. 18142-18146. (2006)

31.Hsin, C.L., S.Y. Yu, and W.W. Wu, “Cobalt silicide nanocables grown on Co films: synthesis and physical properties,Nanotechnology, 21(48): p. 485602. (2010)

32.成功大學微奈米中心儀器使用手冊http://140.116.176.21/www/index.htm.

33.D.B. Williams and C.B. Carter, “Transmission electron microscopy :a textbook for materials science,Plenum Press.(1996)

34.汪建民, 材料分析. 中國材料科學學會.

35.B. D. Cullity, S.R.S., “Elements of x-ray diffraction., Prentice Hall.(2001)

36.成大貴重儀器中心儀器使用手冊http://www.ncku.edu.tw/~facility/facility/index.htm.

37.楊鴻昌, 超導量子干涉磁量儀. 科儀新知, 62: p. 72-79. (1991)

38.Chun-I Tsai, Ping-Hung Yeh, Chiu-Yen Wang, Han-Wei Wu,Uei-Shin Chen, Ming-Yen Lu, Wen-Wei Wu, Lih-Juann Chen, and Zhong-Lin Wang, “Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties,Crystal Growth & Design, 9(10): p. 4514-4518. (2009)

電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊