跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡政學
研究生(外文):Zheng-XueTsai
論文名稱:鍍鈀銅打線於通電測試下界面反應之研究
論文名稱(外文):The Interfacial Reaction on Pd-Coated Cu Wire Bonds Under Current Stressing
指導教授:呂國彰
指導教授(外文):Kuo-Chang Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:鍍鈀銅打線電遷移界面反應
外文關鍵詞:Pd-Coated Copper wire bondingElectromigrationInterfacial Reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:464
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要藉由SEM與EPMA分析觀察純銅打線於鋁墊上經通電測試後,其銅-鋁介面的反應情形,並同時探討鍍鈀銅打線於鋁墊上,對於上述界面反應之影響。研究顯示純銅打線經通電測試後,其銅-鋁介面會產生一介金屬化合物,而此介金屬化合物於陽極端(電子由銅線流向鋁墊)之生成速率快過陰極端(電子由鋁墊流向銅線),這可能是由於銅-鋁界金屬化合物生長速率主要受限於銅原子的擴散速率,銅原子受電子推動而提升其擴散速率,進而促進介金屬化合物之生成。然而鍍鈀銅打線未經通電測試之前,鈀原子主要分布於銅結球外圍,並聚集於接合介面處兩端,以保持其抗氧化之能力。在經相同的通電測試後,鈀原子於鍍鈀銅線內受電子流推動之影響,造成陰陽極端處會有不同鈀原子分佈情形;陽極端界面處會堆積形成一層富鈀層(Pd-enriched layer),而陰極端界面處鈀原子則會逐漸被打散而減少。當介金屬化合物成長時,陽極端界面處形成之Pd-enriched layer會產生擴散障礙層(Diffusion barrier)的效果,抑制銅鋁之間的交互擴散。此現象最終導致鍍鈀銅線接合界面的介金屬化合物生成速度慢於純銅線。而較慢的介金屬化合物生長速度,有助於提升銅線接點可靠度,故鍍鈀銅線的開發對於改善打線接合界面之可靠度性質有正面的幫助。
The influence of palladium in the interfacial reactions of copper wire bonding under current stressing is reported in this study. At the as-bonded step, Pd dissolved into a Cu ball bond and then gathered at the edge of the Cu ball, forming an anti-oxidation layer.
The growth rate of IMCs under current stressing depends on the type of wire bonds and the direction of the current. The interfacial reaction at the anode, where electrons flow from Cu wire bonds to the Al pad, is faster than that of the cathode, where electrons flow from the Al pad to Cu wire bonds. This is probably because the dominate diffusion species in Cu-Al IMCs is copper. Results show that the existence of Pd restrained the growth rate of IMCs due to the formation of the Pd-enriched layer near the interface at the anode which acted as a diffusion barrier; however, a notch was formed at the cathode and the effect on the IMC growth rate could be neglected there. This may be the reason why Pd-coated copper wires show better bonding reliability than pure copper wires in the wire bonding process.

中文摘要...I
Abstract...II
誌謝...III
總目錄...IV
表目錄...VI
圖目錄...VII
第一章 前言...1
第二章 理論基礎及文獻回顧...3
2-1 打線製程原理...3
2-2 打線材料...7
2-2-1 打線替代材料 ...7
2-2-2 抗氧化鍍鈀銅線...8
2-3 銅鋁間介金屬化合物...11
2-4 電遷移原理...14
2-5 界面反應行為...18
2-5-1 界面反應的動力學行為...18
2-5-2 電遷移對界面反應的影響 ...18
2-6 晶體結構對於原子擴散的影響...19
第三章 實驗方法與步驟...24
3-1 打線製程...25
3-2 通電實驗...30
3-3 試片製備...31
3-3-1 橫截面與下視面試片製備...31
3-3-2 穿透式電子顯微鏡之試片製備...31
3-4 顯微組織觀察與分析...33
3-5 界面反應相與成分分佈之分析...36
3-5-1 界面反應相鑑定...36
3-5-2 鈀元素分佈分析...36
第四章 實驗結果與討論...39
4-1 銅鋁界面微觀組織觀察...39
4-2 銅鋁間介金屬化合物相鑑定...46
4-3 介金屬化合物成長動力學...48
4-4 鈀元素於銅球內之分佈分析...53
4-5 綜合討論...60
第五章 結論...64
第六章 未來展望...65
參考文獻...66

[1] Z.W. Zhong, “Fine and ultra-fine pitch wire bonding: challenges and solutions, Microelectron. Int., Vol. 26, No. 1, pp. 10-16, 2009.


[2] S. Murali, N. Srikanth, and C.J. Vath III, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging, Mater. Res. Bull., Vol. 38, No. 4, pp.637-646, 2003.

[3] G.G. Harman, Wire Bonding in Microelectronics: Materials, Processes,Reliability, and Yield, 2nd Ed., McGraw-Hill, New York, USA, 1997.

[4] L.T. Nguyen, D. McDonald, A.R. Danker, and P.Ng, “Optimization of copper wire bonding on Al-Cu metallization, IEEE Trans. Comp. Packag. Manuf. Technol.– Part A, Vol. 18, No. 2, pp. 423-429, 1995.

[5] H. Xu, C. Liu, V.V. Silberschmidt and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads, Scripta Mater., Vol. 61, No. 2, pp. 165-168, 2009.

[6] S. Kaimori, T. Nonaka and A. Mizoguchi,“The development of Cu bonding wire with oxidation-resistant metal coating, IEEE Trans. Adv. Packag., Vol. 29, No. 2, pp. 227-231, 2006.

[7] T. Uno, “Bond reliability under humid environment for coated copper wire and bare copper wire, Microelectron. Reliab., Vol. 51, No. 1, pp. 148-156, 2011.

[8] T. Uno, “Enhancing bondability with coated copper bonding wire, Microelectron. Reliab., Vol. 51, No. 1, pp. 88-96, 2011.

[9] S. Kaimori, T. Nonaka ,and A. Mizoguchi, “Development of ‘hybrid bonding wire’, SEI Tech. Rev., No. 63, pp. 14-18, 2006.

[10] T. Uno, K. Kimura ,and T. Yamada, “Surface-enhanced copper bonding wire for LSI and its bond reliability under humid environments, Proc. 17th Euro. Microelectron. Packag. Conf., Rimini, Italy, 2009.

[11] M. Drozdov, G. Gur, Z. Atzmon, and W.D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing, J. Mater. Sci., Vol. 43, No. 18, pp. 6038-6048, 2008.

[12] M. Drozdov, G. Gur, Z. Atzmon and W.D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: I. Intermetallic formation
in the as-bonded state, J. Mater. Sci., Vol. 43, No. 18, pp. 6029-6037, 2008.

[13] C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou and H.H. Wang, “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging, Microelectron. Reliab.,Vol. 48, No. 3, pp. 416-424, 2008.

[14] H.J. Kim, J.Y. Lee, K.-W. Paik, K.-W. Koh, J. Won, S. Choe, J. Lee, J.-T. Moon and Y.-J. Park, “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability, IEEE
Trans. Comp. Packag. Technol., Vol. 26, No. 2, pp. 367-374, 2003.

[15] H. Xu, C. Liu, V.V. Silberschmidt and Z. Chen, “Growth of intermetallic compounds in thermosonic copper wire bonding on
aluminum metallization, J. Electron. Mater., Vol. 39, No. 1, pp. 124-131, 2010.

[16] H.T. ORCHARD, A.L. GREER, “Electromigration Effects on Intermetallic Growth at Wire-Bond Interfaces, Journal of ELECTRONIC MATERIALS, Vol. 35, No. 11, pp. 1961-1968, 2006.

[17] E. Zin, N. Michael, S.H. Kang, K.H. Oh, U. Chul, J.S. Cho, J.T. Moon and C.-U. Kim, “Mechanism of Electromigration in Au/Al Wirebond and its Effects, 59th Electronic Components and Technology Conference, pp. 943-947, 2009.

[18] S.K. Prasad, “Advanced Wirebond Interconnection Technology,
Kluwer Academic Publishers, New York, Boston, Dordrecht,
London, Moscow, 2004.

[19] Luke England and Tom Jiang, “Reliability of Cu Wire Bonding to Al Metallization, ECTC, pp. 1604-1613, 2007.

[20] C.D. Breach and F.W. Wulff , “A brief review of selected aspects of the materials science of ball bonding, Microelectronics Reliability 50, pp. 1-20, 2010.

[21] F.W. Wulff, C.D. Breach, D. Stephan, Saraswati and K.J. Dittmer, “Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization, Proc. of 6th Electronics Packaging Technology Conference, pp. 348-353, 2004.

[22] Saraswati, Ei Phyu Phyu Theint, D. Stephan, H.M. Goh, E. Pasamanero, D.R.M. Calpito, F.W. Wulff, and C.D. Breach, “High temperature storage (HTS) performance of copper ball bonding wires, Proc. of 7th Electronic Packaging Technology Conference, pp. 602-607, 2005.

[23] Inderjit Singh, J.Y. On, Lee Levine, “Enhancing Fine Pitch, High I/O Devices with Copper Ball Bonding, Proc. of 55th Electronic Components and Technology Conference, pp. 843-847, 2005.

[24] H.T.G Hentzell, R.D. Thompson, and K.N. Tu, “Interdiffusion in copper-aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation, J. Appl. Phys., Vol. 54, No. 12, pp. 6923-6928, 1983.

[25] V. B. Fiks, “On the Mechanism of the Mobility of Ions in Metals, Soviet Physics Solid State, Vol. 1, p. 14, 1959.

[26] N.C. Lee, “Getting Ready for Lead-Free Solders, Soldering & Surface Mount Technology, Vol. 9, pp. 65~69, 1997.

[27] H.B. Huntington, “Diffusion in Solid : Recent Development, ed. A.S. Nowick, and J. J. Burton, “Academic Press, New York, 1975.

[28] J.J. Stephens, Internal Memorandum, Sandia National Laboratories,
Albuquerque, NM, March 2, 1989.

[29] Aditya Kumar and Zhong Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple, Journal of Electronic Materials, Vol. 40, No. 2, 2011

[30] H.T. Orchard and A.L. Greer, “Electromigration effects on compound growth at interfaces, Applied Physics Letters. Vol. 86, No. 23, 2005

[31] H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White ,and Z. Chen, “Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds, Acta Materialia, Vol. 59, No. 14, pp. 5661-5673, 2011.

[32] F.M. d’Heurle, P Gas, and J Philbert, “Diffusion – Reaction: The ordered Cu3Au rule and its corollaries. Solid State Phenomena, Vol.41, pp. 93-102, 1995.

[33] Yuri Grina, Frank R. Wagner, Marc Armbru¨ster, Miroslav Kohout, Andreas Leithe-Jasper, Ulrich Schwarz, Ulrich Wedig, and Hans Georg von Schnering, “CuAl2 revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy. Journal of Solid State Chemistry, Vol.179, pp. 1707–1719, 2006.

[34] Q.Z. Hong and F.M. d’Heurle, “The dominant diffusing species and initial phase formation in AlCu, MgCu, and MgNi systems. J. Appl. Phys. Vol. 72, pp. 4036-4040, 1992.

[35] 陳俊淇, “電子束/聚焦離子束雙束系統應用介紹, 國家奈米元件實驗室。

[36] 汪建民, “材料分析,中國材料科學學會,1998.

[37] 羅聖全, “電子顯微鏡介紹-TEM, 工業技術研究院-微結構與特性分析研究室。


電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top