跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:因信興
研究生(外文):Hsing-SingYin
論文名稱:以溶膠-凝膠法製備矽酸鋁鈉塗層於可撓式不鏽鋼基板上
論文名稱(外文):Sol gel prepared sodium alumino-silicate coatings on flexible stainless steel substrates
指導教授:丁志明丁志明引用關係
指導教授(外文):Jyh-Ming Ting
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:阻障層可撓式基板矽酸鋁(鈉)溶膠-凝膠法
外文關鍵詞:barrier layerflexible substratesodium alumino-silicatesol gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
當CIS/CIGS薄膜應用在可撓式不鏽鋼基板時,由於鈉元素的缺乏、鐵元素的擴散、粗糙的表面以及良好的導電性,致使太陽能元件和模組的效率以及效能降低,因此需要阻障層的幫助。這裡我們嘗試透過另一種材料:矽酸鋁鈉,做為阻障層和鈉供應源。
  在研究中,我們利用具有製程簡易、高生產率、產物均勻之特性的溶膠-凝膠法製備矽酸鋁和矽酸鋁鈉,分別做為無鈉以及含鈉之塗層的材料。其中我們準備了不同莫爾比Al/Si = 0,0.1,0.2以及Na/Si = 0,0.1,0.2的溶膠,以旋轉塗佈法塗佈在SUS 304不鏽鋼基板並以100℃-0.5 hr/500℃-2 hr的熱處理使其緻密化。首先對塗層的完整性、表面形貌以及導電性觀察。當Al3+存在於溶膠中,調整了前驅物的縮合反應速率,使得溶膠塗佈在基板上後,在熱處理過程中不易剝落、破裂。顯微鏡(OM、SEM、AFM)以及XRD的觀察和分析得知,透過溶膠-凝膠法製備的矽酸鋁和矽酸鋁鈉皆呈現透明而且表面均勻平坦的非晶塗層。在四點探針量測下,塗層的片電阻可高達200 MΩ/□。第二部分是藉由ATR-IR和XPS分析觀察塗層的化學組成、鍵結結構和元素分佈,得知矽酸鋁塗層表現出良好的阻障性質且成分均勻性佳;但是當鈉添加後,阻障的能力降低了。而且不論是單層(SA2N)、雙層(SA3N/SA2)或經過退火處理的樣品(Mo/SA3N/SA2/SS),鈉離子的分佈會呈現山峰狀的集中在塗層和基板的介面之間,藉由ATR-IR和O 1s圖譜發現,此現象可能是受到結構中-OH和介面處NBO的存在所影響。最後在SLG和SA2/SS的基板分別以濺鍍法和熱蒸鍍搭配硫化法鍍上Mo以及CuInS2;其中,以SA2/SS為基板薄膜在硫化後會有部分掉落的現象。利用SEM、XRD和Raman觀察比較,發現CuInS2的表面形貌會受到不同基板的影響,但在結晶結構上並無明顯的差異。從XPS的縱深分析可觀察到表面形貌可能與合金前驅物的擴散有關,造成兩種基板的差異。

As stainless steel is applied to flexible substrates of CIS/CIGS solar cells, the factors of electrical conductivity, rough surface, contamination of iron, and the deficiency of sodium lead to the reduction of the efficiency and performance of solar cells and modules. Therefore, deposition of barrier layer is required. Here, we tried another material: sodium alumino-silicate to apply to barrier layer and sodium source.
In this study, we prepared aluminum silicate and sodium alumino -silicate by sol-gel method which possesses characters of simple, high throughput and good homogeneity for preparing the coatings. Here, we prepared sol with various molar ratios of Al/SiAl/Si = 0, 0.1, 0.2 and Na/Si = 0, 0.1, 0.2, and spin-coated on SUS 304 stainless steel with 100℃ for 0.5 hr and 500℃ for 2 hrs heat-treatment for densification.
In first part, the integrity, morphology, and sheet resistance were investigated by microscopy (OM, SEM, and AFM) and four point probe, respectively. The results show that modification of condensation rate of precursors by addition of Al3+ makes coating avoid from seriously delaminating and cracking during the heat-treatment. By SEM and AFM as well as XRD, both coatings with or without sodium-contained show smooth, transparent, and homogeneous, and appear amorphous. By four point probe, the sheet resistance of coating attains more than 200MΩ/□. In second part, we analyzed its composition, bonding structure, and distribution of elements via ATR-IR and XPS. Aluminum silicate coatings show good capability of diffusion barrier and homogeneity in composition. However, as the addition of sodium, capability of diffusion barrier is reduced. Regardless of single (SA2N) or double layer (SA3N/SA2) coatings or annealing, sodium always localized at the interface between coating and substrate. Via spectra of ATR-IR and O 1s, the distribution of sodium may be influenced by the existence of hydroxyl bonds in matrix and NBO at interface. At last, CuInS2 and Mo were deposited on SLG and SA2/SS. Absorber layer on SA2/SS still peeled off the substrates. Observed by SEM, XRD, and Raman, we can find that morphology of CuInS2 is different from the substrates, but crystal structure of CuInS2 is almost the same. In XPS depth profile, it shows that elements in precursor layer diffused toward the substrate which leads to the variation of morphology.

摘要 I
Abstract III
致謝 V
總目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 I-III-VI2族薄膜太陽能電池 2
第二章 理論背景與文獻回顧 4
2-1 CIS/CIGS太陽能電池發展 4
2-2 CIS/CIGS太陽能電池之元件結構 6
2-2-1 吸收層(absorber layer) 6
2-2-2 緩衝層(buffer layer) 8
2-2-3 窗層(window layer) 10
2-2-4 背電極(back contact) 12
2-2-5 基板(substrate) 12
2-3 Na對CIS/CIGS薄膜太陽能電池之影響 17
2-4 Fe對CIS/CIGS薄膜太陽能電池之影響 20
2-5 阻障層 (barrier layer) 24
2-6 研究動機與目的 31
第三章 實驗步驟與儀器分析 33
3-1 實驗流程 33
3-2 使用之基板和前處理 34
3-3 化學藥品和溶膠的配製 34
3-4 Mo背電極之鍍製 38
3-5 CuInS2吸收層之鍍製 39
3-6 儀器分析和介紹 40
3-6-1 表面形貌之分析 40
3-6-2 四點探針測試 40
3-6-3 結晶結構分析 41
3-6-4 化學鍵結和縱深分析 42
3-6-5 微區拉曼光譜分析 44
第四章 結果與討論 46
4-1 阻障層之完整性、表面形貌和電性 46
4-2 塗層之化學成份、結構和元素分佈分析 53
第五章 結論 71
參考文獻 73

1.Avrutin, V., N. Izyumskaya, and H. Morkoç, Semiconductor solar cells: Recent progress in terrestrial applications. Superlattices and Microstructures, 2011. 49(4): p. 337-364.
2.Jackson, P., et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): p. 894-897.
3.Anderson, T.J., U.o. Florida, and N.R.E. Laboratory, Processing of CuInSe2-based Solar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses. 6 May 1996 - 5 May 19971999: National Renewable Energy Laboratory.
4.Wagner, S., et al., CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters, 1974. 25(8): p. 434-435.
5.Potter, R.R., Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells. Solar Cells, 1986. 16(0): p. 521-527.
6.Wei, S.H., S.B. Zhang, and A. Zunger, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters, 1998. 72(24): p. 3199-3201.
7.Contreras, M.A., et al., Progress toward 20% efficiency in Cu(In,Ca)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics, 1999. 7(4): p. 311-316.
8.Wuerz, R., et al., CIGS thin-film solar cells and modules on enamelled steel substrates. Solar Energy Materials and Solar Cells, 2012. 100(0): p. 132-137.
9.Chirila, A., et al., Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials, 2011. 10(11): p. 857-861.
10.Singh, U.P. and S.P. Patra, Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells. International Journal of Photoenergy, 2010. 2010.
11.He, Y.B., et al., Deposition of CuInS2 thin films by RF reactive sputtering with a ZnO:Al buffer layer. Journal of Physics and Chemistry of Solids, 2003. 64(9–10): p. 2075-2079.
12.Powalla, M., et al., Highly efficient CIS solar cells and modules made by the co-evaporation process. Thin Solid Films, 2009. 517(7): p. 2111-2114.
13.Yukawa, T., K. Kuwabara, and K. Koumoto, Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film. Thin Solid Films, 1996. 286(1–2): p. 151-153.
14.Krunks, M., et al., Composition and structure of CuInS2 films prepared by spray pyrolysis. Thin Solid Films, 2000. 361–362(0): p. 61-64.
15.Eisele, W., et al. New cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar cells. in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. 2000.
16.Hariskos, D., S. Spiering, and M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films, 2005. 480–481(0): p. 99-109.
17.Ishizuka, S., et al., Fabrication of wide-gap Cu(In1−xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Solar Energy Materials and Solar Cells, 2005. 87(1–4): p. 541-548.
18.Wada, T., et al., Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films, 2001. 387(1–2): p. 118-122.
19.Scofield, J.H., et al., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films, 1995. 260(1): p. 26-31.
20.Kessler, F. and D. Rudmann, Technological aspects of flexible CIGS solar cells and modules. Solar Energy, 2004. 77(6): p. 685-695.
21.Wuerz, R., et al., CIGS thin-film solar cells on steel substrates. Thin Solid Films, 2009. 517(7): p. 2415-2418.
22.Kronik, L., D. Cahen, and H.W. Schock, Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Advanced Materials, 1998. 10(1): p. 31-+.
23.Wei, S.-H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
24.Rockett, A., et al., Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances. Thin Solid Films, 2000. 372(1-2): p. 212-217.
25.Ishizuka, S., et al., Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2009. 106(3): p. 034908-6.
26.Rudmann, D., et al., Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics, 2005. 97(8): p. 084903-5.
27.Ishizuka. Shogo, H.H., Kido. Nobuaki, Hashimoto. Kimikazu, Yamada. Akimara, Niki. Shigeru, Efficiency Enhancement of Cu(In,Ga)Se2 Solar Cells Fabricated on Flexible Polyimide Substrates using Alkali-Silicate Glass Thin Layers. Applied Physics Express, 2008. 1(9).
28.Başol, B.M., et al., Flexible and light weight copper indium diselenide solar cells on polyimide substrates. Solar Energy Materials and Solar Cells, 1996. 43(1): p. 93-98.
29.Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 453-466.
30.Ishizuka, S., et al., Alkali incorporation control in Cu(In,Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency. Applied Physics Letters, 2008. 93(12): p. 124105-3.
31.Herz, K., et al., Dielectric barriers for flexible CIGS solar modules. Thin Solid Films, 2002. 403–404(0): p. 384-389.
32.Başol, B.M., et al., Copper indium diselenide thin film solar cells fabricated on flexible foil substrates. Solar Energy Materials and Solar Cells, 1993. 29(2): p. 163-173.
33.Gledhill, S., et al., The role of the spray pyrolysed Al2O3 barrier layer in achieving high efficiency solar cells on flexible steel substrates. Applied Physics A: Materials Science & Processing, 2011. 104(1): p. 407-413.
34.Pianezzi, F., et al., Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier. Progress in Photovoltaics: Research and Applications, 2012. 20(3): p. 253-259.
35.Choi, P.-P., et al., Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. Journal of Applied Physics, 2011. 110(12): p. 124513-7.
36.Gledhill, S., et al., Spray pyrolysis of barrier layers for flexible thin film solar cells on steel. Solar Energy Materials and Solar Cells, 2011. 95(2): p. 504-509.
37.M.A. Contreras, B.E., P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi. On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers. in 26th IEEE Photovoltaic Specialists Conference. 1997. California.
38.Niles, D.W., et al., Na impurity chemistry in photovoltaic CIGS thin films: Investigation with X-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(6): p. 3044-3049.
39.Niles, D.W., M. Al-Jassim, and K. Ramanathan, Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(1): p. 291-296.
40.Hedstrom, J., et al. ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE. 1993.
41.Rudmann, D., et al., Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 2004. 84(7): p. 1129-1131.
42.Herz, K., et al., Diffusion barriers for CIGS solar cells on metallic substrates. Thin Solid Films, 2003. 431–432(0): p. 392-397.
43.Martı́nez, M.A., et al., Arrangement of flexible foil substrates for CuInSe2-based solar cells. Surface and Coatings Technology, 2001. 148(1): p. 61-64.
44.Khelifi, S., et al., Characterization of flexible thin film CIGSe solar cells grown on different metallic foil substrates. Energy Procedia, 2010. 2(1): p. 109-117.
45.Shi, C.Y., et al., Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers. Solar Energy Materials and Solar Cells, 2009. 93(5): p. 654-656.
46.Ishizuka, S., et al., Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material. Journal of Renewable and Sustainable Energy, 2009. 1(1): p. 013102-8.
47.Ohring, M., The Materials Science of Thin Films: Deposition and Structure2002: Academic Press.
48.Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing1990: Academic Pr.
49.M, K., Doped silicon dioxide films from spin-on solutions. Thin Solid Films, 1989. 177(1–2): p. 231-237.
50.Landry, C.C. and A.R. Barron, MOCVD of alumina-silica oxidation resistant coatings on carbon fibers. Carbon, 1995. 33(4): p. 381-387.
51.Chen, Z., M. Li, and Y. Shi, Alumina-silica composite coatings on graphite by CVD at 550°C. Journal of Coatings Technology and Research, 2006. 3(3): p. 231-235.
52.Zhang, X., et al., Investigation on the atomic oxygen erosion resistance of sol–gel alumina–silica composite films on Kapton. Materials Chemistry and Physics, 2009. 114(1): p. 179-184.
53.Hartmann, M., et al. Flexible and light weight substrates for Cu(In,Ga)Se2 solar cells and modules. in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. 2000.
54.Satoh, T., et al., Cu(In,Ga)Se2 solar cells on stainless steel substrates covered with insulating layers. Solar Energy Materials and Solar Cells, 2003. 75(1–2): p. 65-71.
55.Wuerz, R., et al., Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates. Thin Solid Films, 2011. 519(21): p. 7268-7271.
56.Tsai, C.-H., J.-M. Ting, and R.-R. Wang, Ex situ structural characterization during the formation of CuInS2 thin films. Acta Materialia, 2011. 59(1): p. 349-354.
57.Brandon, D.G. and W.D. Kaplan, Microstructural characterization of materials2008: John Wiley.
58.Urban, M.W., Multi-dimensional spectroscopy of polymer films; surface and interfacial interactions. Macromolecular Symposia, 1999. 141(1): p. 15-31.
59.Vickerman, J.C. and I. Gilmore, Surface Analysis: The Principal Techniques2009: John Wiley & Sons.
60.Barr, T.L., Recent advances in X-ray photoelectron spectroscopy studies of oxides Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1991. 9(3): p. 1793-1805.
61.Bansal, N.P., Influence of Several Metal lons on the Gelation Activation Energy of Silicon Tetraethoxide. Journal of the American Ceramic Society, 1990. 73(9): p. 2647-2652.
62.Hoffmann, U., G. Heide, and G.H. Frischat, Reactions between sol–gel coatings and some technical glass substrates during consolidation. Journal of Non-Crystalline Solids, 2005. 351(43–45): p. 3562-3569.
63.Hong, I.T. and C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 393(1-2): p. 213-222.
64.Paparazzo, E., XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3. Journal of Electron Spectroscopy and Related Phenomena, 1987. 43(2): p. 97-112.
65.Yong, S.L., et al., Chemical characterisation of the steel–geopolymeric gel interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 302(1–3): p. 411-423.
66.Onorato, P.I.K., et al., Bridging and Nonbridging Oxygen Atoms in Alkali Aluminosilicate Glasses. Journal of the American Ceramic Society, 1985. 68(6): p. C-148-C-150.
67.Simonsen, M., et al., XPS and FT-IR investigation of silicate polymers. Journal of Materials Science, 2009. 44(8): p. 2079-2088.
68.Oréfice, R. and W. Vasconcelos, Sol-Gel transition and structural evolution on multicomponent gels derived from the alumina-silica system. Journal of Sol-Gel Science and Technology, 1997. 9(3): p. 239-249.
69.Madejova, J. and P. Komadel, Baseline studies of The Clay Minerals Society Source Clays: Infrared methods. Clays and Clay Minerals, 2001. 49(5): p. 410-432.
70.Farmer, V.C., The Infrared spectra of minerals1974: Mineralogical Society.
71.Bhaskar J. Saikia, G.P., Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics, 2010. 1(4): p. 206- 210.
72.Aoki, Y., H. Habazaki, and T. Kunitake, Size-Scaling of Proton Conductivity in Amorphous Aluminosilicate Acid Thin Films. Journal of the American Chemical Society, 2009. 131(40): p. 14399-14406.
73.Hsieh, C.H., H. Jain, and E.I. Kamitsos, Correlation between dielectric constant and chemical structure of sodium silicate glasses. Journal of Applied Physics, 1996. 80(3): p. 1704-1712.
74.Álvarez-Garcı́a, J., et al., MicroRaman scattering from polycrystalline CuInS2 films: structural analysis. Thin Solid Films, 2000. 361–362(0): p. 208-212.
75.Alvarez, G., et al., Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001. 19(1): p. 232-239.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top