跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯孟南
研究生(外文):Mon-NanHou
論文名稱:將快速凝固霧化法製作之AZ80鎂合金粉末以火花電漿法燒結成塊材及其機械性質之探討
論文名稱(外文):A Study of Employing Spark Plasma Sintering to Consolidate AZ80 Mg Powder Synthesized by Rapid-Solidifying Atomization into Bulk AZ80 Mg Alloy and its Mechanical Properties
指導教授:曹紀元
指導教授(外文):Chi-Yuan Tsao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:火花電漿燒結鎂合金快速凝固霧化法機械性質
外文關鍵詞:Spark plasma sintering (SPS)Mg alloysRapid-solidifying atomizationMechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
火花電漿燒結(Spark Plasma Sintering)是近代熱門的粉末冶金技術之一,其優勢為燒結快速與緻密化程度高。本文研究即以快速凝固霧化法(Rapid-solid Atomization)製造鎂合金AZ80粉末,再以火花電漿燒結法將粉末燒結緻密,其燒結參數(溫度、時間)對微結構與機械性質之影響也將於本文中被討論。目前的研究成果顯示以快速凝固霧化法所得之粉末其晶粒〈5μm,將粉末於450℃持溫燒結3分鐘後,成品壓縮強度為376 MPa,微硬度70 Hv200gf,相較於鑄造材料其壓縮強度與硬度分別提升1.4與1.3倍。此外,材料之加工性質透過背向式擠型分析後,於擠型極限圖中顯示其加工範圍擴增,且於較低溫(250oC)擠製時可節省近20%,於較高溫(300~450oC)擠製後可具有較小的晶粒。
Spark Plasma Sintering (SPS) is one of the promising PM techniques in recent years, with this special technique, sintering process could be accomplished by a relatively short time and high density. This special sintering technique would be used in this research to consolidate the AZ80 Mg alloy powders produced by Rapid-solid Atomization (RSA), and the effect of sintering parameter (temperature, time) on the microstructure will be discuss as well. The results reveals that the RSA powders has a grain size 〈5μm, the highest compressive strength is 376 Mpa with a hardness of 70 Hv200gf attained by SPS process at 450oC for 3 minutes, the compressive strength and hardness are 1.4 times and 1.3 times higher respectively of its casting material. In addition, the workability is analyzed using an extrusion limit diagram of backward extrusion, which shows that SPSed-AZ80 bulk has a better workability and a finer microstructure after extrusion process.
摘要 II
Abstract III
致謝 IV
第一章 前言 1
第二章 理論基礎及文獻回顧 5
2.1 鎂合金簡介 5
2.1.1 鎂合金之命名 5
2.1.2 鎂合金之應用 5
2.2 鎂合金之塑性變形與強化理論 6
2.2.1 鎂合金變形機制 6
2.2.2 鎂合金強化機制 7
2.3 快速凝霧化製程 9
2.4 火花電漿燒結(SPS) 11
2.5 間接式擠型與加工性分析 12
2.5.1 材料加工性與間接式擠型簡介 12
2.5.2 加工性與高溫變形分析方法 14
第三章 實驗步驟、方法與設備 17
3.1 粉末製備與處理 17
3.2 AZ80粉末特性分析 17
3.2.1 粉末視密度 17
3.2.2 粉末成份分析 18
3.3 火花電漿燒結試驗(SPS) 19
3.4 金相製備與微結構分析 19
3.4.1 光學顯微鏡與電子顯微鏡金相製備 19
3.4.2 TEM試片製備與金相分析 20
3.4.3 晶體結構鑑定 21
3.5 微硬度試驗 21
3.6 壓縮強度試驗 21
3.7 擠型試驗 22
第四章 結果及討論 23
4.1 粉末性質 23
4.1.1 粉末型態與粉末堆積 23
4.1.2 鑄造材與粉末之微結構分析 23
4.2 燒結成品微結構分析 24
4.3 機械性質分析 26
4.3.1 微硬度與燒結參數之關係 27
4.3.2 室溫壓縮強度與燒結參數之關係 27
4.3.3 加工性質分析 29
第五章 結論 34
參考文獻 36


1.Mordike, B.L. and T. Ebert, Magnesium - Properties - applications - potential. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 302(1): p. 37-45.
2.Zeng, R.C., et al., Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008. 10(8): p. B3-B14.
3.Polmear, I.J., MAGNESIUM ALLOYS AND APPLICATIONS. Materials Science and Technology, 1994. 10(1): p. 1-16.
4.Kulekci, M.K., Magnesium and its alloys applications in automotive industry. International Journal of Advanced Manufacturing Technology, 2008. 39(9-10): p. 851-865.
5.Easton, M., et al., Magnesium alloy applications in automotive structures. Jom, 2008. 60(11): p. 57-62.
6.Cao, H. and M. Wessen, Effect of microstructure on mechanical properties of As-cast Mg-Al alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004. 35A(1): p. 309-319.
7.Lu, Y.Z., et al., Fracture behavior of AZ91 magnesium alloy. Materials Letters, 2000. 44(5): p. 265-268.
8.Ogawa, N., M. Shiomi, and K. Osakada, Forming limit of magnesium alloy at elevated temperatures for precision forging. International Journal of Machine Tools & Manufacture, 2002. 42(5): p. 607-614.
9.Nishio, T., et al., Semi-solid consolidation processing of rapidly solidified powders for fabrication of high strength AZ91 magnesium alloys. Materials Transactions, 2002. 43(8): p. 2110-2114.
10.Ayman, E., U. Junko, and K. Katsuyoshi, Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion. Acta Materialia, 2011. 59(1): p. 273-282.
11.Yang, Z.R., et al., A new-developed magnesium matrix composite by reactive sintering. Composites Part a-Applied Science and Manufacturing, 2008. 39(9): p. 1427-1432.
12.Iwaoka, T. and M. Nakamura, Effect of Compaction Temperature on Sinterability of Magnesium and Aluminum Powder Mixtures by Warm Compaction Method. Materials Transactions, 2011. 52(5): p. 943-947.
13.Wolff, M., T. Ebel, and M. Dahms, Sintering of Magnesium. Advanced Engineering Materials, 2010. 12(9): p. 829-836.
14.Orrù, R., et al., Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering: R: Reports, 2009. 63(4-6): p. 127-287.
15.Omori, M., Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000. 287(2): p. 183-188.
16.Straffelini, G., et al., Spark plasma sintering and hot compression behaviour of AZ91 Mg alloy. Materials Science and Technology, 2011. 27(10): p. 1582-1587.
17.Muhammad, W.N.A.W., et al., Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. Journal of Alloys and Compounds, 2011. 509(20): p. 6021-6029.
18.Zheng, B., et al., High strength, nano-structured Mg–Al–Zn alloy. Materials Science and Engineering: A, 2011. 528(4-5): p. 2180-2191.
19.Liu, D., et al., Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part II: Influence of Processing Conditions on Densification and Properties. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012. 43A(1): p. 340-350.
20.Obara, T., H. Yoshinga, and S. Morozumi, 112BAR2 (11BAR23) SLIP SYSTEM IN MAGNESIUM. Acta Metallurgica, 1973. 21(7): p. 845-853.
21.Zhou, H.T., et al., Hot workability characteristics of magnesium alloy AZ80—A study using processing map. Materials Science and Engineering: A, 2010. 527(7-8): p. 2022-2026.
22.Al-Samman, T. and G. Gottstein, Dynamic recrystallization during high temperature deformation of magnesium. Materials Science and Engineering: A, 2008. 490(1-2): p. 411-420.
23.Quan, G.-Z., et al., The workability evaluation of wrought AZ80 magnesium alloy in hot compression. Materials & Design, 2011. 32(4): p. 2462-2468.
24.Slooff, F.A., et al., Hot workability analysis of extruded AZ magnesium alloys with processing maps. Materials Science and Engineering: A, 2010. 527(3): p. 735-744.
25.Sheppard, T. and D. Raybould, NEW APPROACH TO CONSTRUCTION OF EXTRUSION-LIMIT DIAGRAMS, GIVING STRUCTURAL INFORMATION WITH APPLICATION TO SUPERPURE ALUMINUM AND AL-ZN-MG ALLOYS. Journal of the Institute of Metals, 1973. 101(MAR): p. 73-78.
26.Aikin, B.J.M. and T.H. Courtney, MODELING OF PARTICLE-SIZE EVOLUTION DURING MECHANICAL MILLING. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1993. 24(11): p. 2465-2471.
27.Akhtar, A. and Teghtsoo.E, SUBSTITUTIONAL SOLUTION HARDENING OF MAGNESIUM SINGLE-CRYSTALS. Philosophical Magazine, 1972. 25(4): p. 897-&.
28.Avedesian, M.M., H. Baker, and ASM International. Handbook Committee., Magnesium and magnesium alloys. ASM specialty handbook1999, Materials Park, OH: ASM International. ix, 314 p.
29.Somekawa, H., A. Singh, and T. Mukai, Deformation structure after fracture-toughness test of Mg–Al–Zn alloys processed by equal-channel-angular extrusion. Philosophical Magazine Letters, 2006. 86(3): p. 195-204.
30.Koike, J., et al., Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Materials Transactions, 2003. 44(4): p. 445-451.
31.Courtney, T.H., Mechanical behavior of materials. 2nd ed. McGraw-Hill series in materials science2000, Boston: McGraw Hill. xviii, p. 733
32.Chua, B.W., L. Lu, and M.O. Lai, Deformation behaviour of ultrafine and nanosize-grained Mg alloy synthesized via mechanical alloying. Philosophical Magazine, 2006. 86(19): p. 2919-2939.
33.Kelly, A. and R. Nicholson, Strengthening methods in crystals. Elsevier materials science series1971, Amsterdam, New York,: Elsevier Pub. Co. x, 629 p. with illus.
34.Armstrong, R., et al., PHILOSOPHICAL MAGAZINE, 1962. 7(73): p. 45.
35.Han, B.Q. and D.C. Dunand, Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000. 277(1-2): p. 297-304.
36.Lavernia, E.J. and T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications. Journal of Materials Science, 2009. 45(2): p. 287-325.
37.Su, Y.H. and C.Y.A. Tsao, Modeling of solidification of molten metal droplet during atomization. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 1997. 28(6): p. 1249-1255.
38.Chen, Y.M., et al., Modeling of atomization rate during gas atomization. Acta Materialia, 1998. 46(3): p. 1011-1023.
39.Munir, Z.A., D.V. Quach, and M. Ohyanagi, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. Journal of the American Ceramic Society, 2011. 94(1): p. 1-19.
40.Schey, J.A., Introduction to manufacturing processes. 3rd ed. McGraw-Hill series in mechanical engineering and materials science2000, Boston: McGraw-Hill. 344,345,270.
41.Castle, A.F. and T. Sheppard, Hot Working Theory Applied to Extrusion of Some Aluminum Alloys. Metals technology, 1976. 3.
42.ASM International. Handbook Committee., ASM handbook. 10th ed. Vol. 3. 1990, Materials Park, OH: ASM International.
43.Yakubtsov, I.A., et al., Effects of heat treatment on microstructure and tensile deformation of Mg AZ80 alloy at room temperature. Materials Science and Engineering: A, 2008. 496(1-2): p. 247-255.
44.Barbagallo, S., et al., Divorced eutectic in a HPDC magnesium–aluminum alloy. Journal of Alloys and Compounds, 2004. 378(1-2): p. 226-232.
45.Uematsu, Y., et al., Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006. 434(1-2): p. 131-140.
46.Xiong, Y., et al., Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part I: Microstructure Evolution. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012. 43A(1): p. 327-339.
47.Kingery, W.D. and M. Berg, STUDY OF THE INITIAL STAGES OF SINTERING SOLIDS BY VISCOUS FLOW, EVAPORATION-CONDENSATION, AND SELF-DIFFUSION JOURNAL OF APPLIED PHYSICS, 1955. 26(10): p. 1205-1212.
48.Mabuchi, M., et al., Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Materialia, 1999. 47(7): p. 2047-2057.
49.Ion, S.E., F.J. Humphreys, and S.H. White, DYNAMIC RECRYSTALLIZATION AND THE DEVELOPMENT OF MICROSTRUCTURE DURING THE HIGH-TEMPERATURE DEFORMATION OF MAGNESIUM. Acta Metallurgica, 1982. 30(10): p. 1909-1919

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊