跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王興焜
研究生(外文):Shing-KuenWang
論文名稱:單色軟X光引發吸附在Si(111)-7x7矽單晶表面的分子之隨時間變化的光物理及光化學研究
論文名稱(外文):Basic studies on time-dependent surface photophysics and photochemistry of molecules adsorbed on Si(111)-7x7 by monochromatic soft X-ray
指導教授:溫清榕
指導教授(外文):Ching-Rong Wen
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:65
中文關鍵詞:光電子譜光子激發脫附譜光解
外文關鍵詞:PESPSDphotolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們採用我們自己發展的三個新的表面分析技術來研究單色軟X光引發吸附在溫度30 K的Si(111)-7x7表面的CF2Cl2分子之光物理及化學反應機制。此三個實驗技術是(1)連續時間光電子譜技術(continuous-time photoelectron spectroscopy),(2)隨光子曝露量變化之光子激發脫附技術(photon-exposure-dependent photon-stimulated desorption)和(3)連續時間光子激發脫附譜技術(continuous-time photon-stimulated desorption spectroscopy)。在能量為98/120 eV光子的連續照射下,連續時間光電子能譜顯示吸附分子會有解離發生。吸附分子的光解離截面可從這些光電子能譜中求得,它們分別是1.4x10-18與8.0x10-18平方公分。又,我們也得到CF2Cl2分子在鄰近Si(2p)邊緣的光子照射下之解離機制是解離性電子附著(dissociative electron attachment,DEA)與間接雙極解離(indirect dipolar dissociation,IDD)。而光子照射下的表面生成物是SiF。
另外,連續時間光子激發脫附譜技術被用來研究吸附在矽單晶表面的CF2Cl2分子在鄰近F(1s)邊緣的光反應。由一系列隨光子曝露量變化的F+ PSD譜圖中,我們發現CF2Cl2分子的減少以及表面SiF的生成。為了瞭解吸附的CF2Cl2分子之F(1s)蕊層激發機制,我們也做了CF2Cl2分子固體的F+ PSD譜圖與總電子產額(total electron yield,TEY)譜圖的測量。我們得到吸附分子的解離機制是DEA、IDD與F(1s)蕊層的直接激發。又,分子在變能量(681-704 eV)光子照射下的光解離截面可從連續的F+ PSD譜圖求得,此值大約是6.0x10-18平方公分。
Monochromatic soft x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7×7 at 30 K near the Si(2p) and F(1s) edges were studied by using three new surface analytic techniques proposed by our research group: (1) Continuous-time photoelectron spectroscopy (PES), (2) Photon-exposure-dependent photon-stimulated desorption (PSD), and (3) Continuous-time photon-stimulated desorption spectroscopy. During the continual irradiation of 98/120 eV photons, the continuous-time photoelectron spectra showed that the adsorbed molecules are dissociated. The photolysis cross sections were deduced from these spectra and found to be ~1.4×10−18 and ~8.0×10−18 cm2, respectively. The mechanisms responsible for the dissociation of CF2Cl2 molecules by the photons near the Si(2p) edge are dissociative electron attachment (DEA) and indirect dipolar dissociation (IDD). The fluorosilyl species produced on the surface during the photon irradiation is SiF.
On the other hand, the continuous-time photon-stimulated desorption spectroscopy was employed to investigate the photoreactions of CF2Cl2 adsorbed on silicon surface near the F(1s) edge. The variation of spectral shapes in the sequential F+ PSD spectra shows the consumption of the CF2Cl2 molecules and the production of surface SiF species as a function of photon exposure. The F+ PSD spectrum and total electron yield (TEY) spectrum of solid CF2Cl2 were also measured in order to study the excitation mechanisms of F(1s) core level of the adsorbed CF2Cl2. The mechanisms responsible for the dissociations of the adsorbed molecules are DEA, IDD and direct excitation of F(1s) core level. The photolysis cross section of the CF2Cl2 molecules by photons with varying energy (681–704 eV) is deduced from the sequential F+ PSD spectra and found to be ~6.0×10−18 cm2.
1. INTRODUCTION…1
References…6

2. Monochromatic soft x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7×7 near the Si(2p) edge…11
2.1 Introduction…11
2.2 Experiment…13
2.3 Results and discussion…16
2.3.1 Continuous-time valence-level photoelectron spectra…17
2.3.2 Photon-exposure dependence of the F− and F+ yields…22
2.3.3 Surface fluorosilyl products at the near completion of photolysis…28
2.3.4 Continuous-time F+ photon-stimulated desorption spectra…30
2.4 Conclusions…36
References…37

3. Monochromatic soft x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7×7 studied by continuous-time photon-stimulated desorption spectroscopy near F(1s) edge…41
3.1 Introduction…41
3.2 Experiment…43
3.3 Results and discussion…45
3.4 Conclusion…57
References…60

4. CONCLUSION…64
Chapter 1
[1] H. Kyuragi and T. Urisu, J. Appl. Phys. 61, 2035 (1987).
[2] H. Kyuragi and T. Urisu, Appl. Phys. Lett. 50, 1254 (1987).
[3] T. Urisu and H. Kyuragi, J. Vac. Sci. Technol. B 5, 1436 (1987).
[4] C. Wang and T. Urisu, Appl. Surf. Sci. 242, 276 (2005).
[5] C. Wang, X. Zhang and T. Urisu, J. Synchrotron Radiat. 13, 432 (2006).
[6] I. H. Cho, D. H. Kim and D. Y. Noh, Appl. Phys. Lett. 89, 054104 (2006).
[7] H. Mekaru, M. Fujimaki, K. Awazu and M. Takahashi, Microsyst. Technol. 16,1339 (2010).
[8] W. Eberhardt, T. K. Sham, R. Carr, S. Krummacher, M. Strongin, S. L. Wengand D. Wesner, Phys. Rev. Lett. 50, 1038 (1987).
[9] T. Sekitani, E. Ikenaga, K. Fujii, K. Mase, N. Ueno and K. Tanaka, J. Electron. Spectrosc. Relat. Phenom. 101-103, 135 (1999).
[10] K. Tanaka, E. O. Sako, E. Ikenaga, K. Isari, S. A. Sardar, S. Wada, T. Sekitani, K. Mase and N. Ueno, J. Electron. Spectrosc. Relat. Phenom. 119 255 (2001).
[11] S, Wana, R. Sumii, K. Isari, S. Waki, E. O. Sako, T. Sekiguchi, T. Sekitani and K. Tanaka, Surf. Sci. 528 242 (2003).
[12] S. Wada, R. Sumii, H. Kizaki, Y. Iizuka, Y. Matsumoto, T. Sekitani and K. Tanaka, Surf. Sci. 593, 283 (2005).
[13] S. Wada, H. Kizaki, Y. Matsumoto, R. Sumii and K. Tanaka, J. Phys.: Condens. Matter 18, S1629 (2006).
[14] H. Kizaki, Y. Matsumoto, H. Ban, K. Morishita, S. Wada and K. Tanaka, Surf. Sci. 601, 3956 (2007).
[15] R. A. Rosenberg, F. K. Perkins, D. C. Mancini, G. R. Harp, B. P. Tonner, S. Lee and P. A. Dowben, Appl. Phys. Lett. 58, 607 (1991).
[16] F. K. Perkins, R. A. Rosenberg, S. Lee and P. A. Dowben, J. Appl. Phys. 69, 4103 (1991).
[17] K. Shobatake, H. Ohashi, K. Fukui, A. Hiraya, N. Hayasaka, H. Okano, A. Yoshida and H. Kume, Appl. Phys. Lett. 56, 2189 (1990).
[18] S. Terakado, J. Nishino, M. Morigami, M. Harada, S. Suzuki, K. Tanaka and J. Chikawa, Jpn. J. Appl. Phys. Part 2 29, L709 (1990).
[19] Y. Utsumi, J. Takahashi and T. Urisu, J. Vac. Sci. Technol. B 9, 2507 (1991).
[20] S. Terakado, O. Kitamura, S. Suzuki and K. Tanaka, J. Vac. Sci. Technol. B 11, 1890 (1993).
[21] B. Li, I. Twesten and N. Schwentner N, Appl. Phys. A 57, 457 (1993).
[22] B. Li, I. Twesten, H. P. Krause and N. Schwentner, Appl. Phys. Lett. 64, 1635 (1994).
[23] L.-C. Chou, W.-M. Chuang, W.-C. Tsai, S.-K. Wang, Y.-H. Wu and C.-R. Wen, Appl. Phys. Lett. 91, 144103 (2007).
[24] T. E. Madey, D. E. Ramaker and R. Stockbauer, Ann. Rev. Phys. Chem. 35, 215 (1984).
[25] M. L. Knotek, V. O. Jones and V. Rehn, Phys. Rev. Lett. 43, 300 (1979).
[26] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 112, 9068 (2000).
[27] L.-C. Chou, C.-Y. Jang, Y.-H.Wu, W.-C. Tsai, S.-K.Wang, J. Chen, S.-C. Chang, C.-C. Liu, Y. Shai and C.-R. Wen, J. Chem. Phys. 129, 214104 (2008).
[28] W.-C. Tsai, S.-K. Wang, L.-C. Chou, J. Chen, Y.-H. Wu, H.-C. Chen and C.-R. Wen, Surf. Sci. 604, 1494 (2010).
[29] L.-C. Chou and C.-R. Wen, Phys. Rev. B 73, 195407 (2006).
[30] C.-R. Wen, C.-Y. Jang, L.-C. Chou, J. Chen, Y.-H. Wu, S.-C. Chang, W.-C. Tsai, C.-C. Liu, S.-K. Wang and Y. Shai, J. Chem. Phys. 127, 114704 (2007).
[31] W.-C. Tsai, S.-K. Wang, T.-M. He, L.-C. Chou, Y.-C. Hsieh, K.-Y. Liao, H.-C. Chen and C.-R. Wen, J. Chem. Phys. 135, 164704 (2011).
[32] S.-K. Wang, Master thesis, National Cheng Kung University, Taiwan (2004).
[33] H.W. Jochims, W. Lohr, H. Baumgartel, Ber. Bunsenges. Physik. Chem. 80, 130 (1976).
[34] J.M. Ajello, W.T. Hunteress, Jr., P.Rayermann, J. Chem. Phys. 64, 4746 (1976).
[35] H. Schenk, H. Oertel, H. Baumgartel, Ber. Bunsenges. Physik. Chem. 83, 683 (1979).
[36] W. Zhang, G. Cooper, T. Ibuki, C.E. Brion, Chem. Phys. 151, 357 (1991).
[37] E. Illenberger, H.-U. Scheunemann, H. Baumgartel, Chem. Phys. 37, 21 (1979).
[38] E. Illenberger, Ber. Bunsenges. Phys. Chem. 86, 252 (1982).
[39] L.G. Christophorou, J.K. Olthoff, Y.J. Wang, Phys. Chem. Ref. Data 26, 1205 (1997).
[40] K. Aflatooni, P.D. Burrow, Int. J. Mass Spectrom. 205, 149 (2001).
[41] K. Graupner, S.A. Haughey, T.A. Field, C.A. Mayhew, T.H. Hoffmann, O. May, J. Fedor, M. Allan, I.I. Fabrikant, E. Illenberger, M. Braun, M.-W. Ruf, H. Hotop, J. Phys. Chem. A 114, 1474 (2010).
[42] E. Illenberger, Chem. Rev. 92, 1589 (1992).
[43] J. Langer, S. Matt, M. Meinke, P. Tegeder, A. Stamatovic, E. Illenberger, J. Chem. Phys. 113, 11063 (2000).
[44] N.S. Faradzhev, C.C. Perry, D.O. Kusmierek, D.H. Fairbrother, T.E. Madey, J. Chem. Phys. 121, 8547 (2004).
[45] C.C. Perry, N.S. Faradzhev, D.H. Fairbrother, T.E. Madey, Int. Rev. Phys. Chem. 23, 289 (2004).
[46] S. Solovev, D.O. Kusmierek, T.E. Madey, J. Chem. Phys. 120, 968 (2004).
[47] F.R. McFeely, J.F. Morar, N.D. Shinn, G. Landgren, F.J. Himpsel, Phys. Rev. B 30, 764 (1984).
[48] F.A. Houle, J. Vac. Sci. Technol. B 7, 1149 (1989).
[49] J.A. Yarmoff, A. Taleb-Ibrahimi, F.R. McFeely, Ph. Avouris, Phys. Rev. Lett. 60, 960 (1988).
[50] J.A. Yarmoff, F.R. McFeely, Phys. Rev. B 38, 2057 (1988).
[51] J.A. Yarmoff, S.A. Joyce, J. Vac. Sci. Technol. A 7, 2445 (1989).
[52] J.A. Yarmoff, S.A. Joyce, Phys. Rev. B 40, 3143 (1989).
[53] C.W. Lo, D.K. Shuh, V. Chakarian, T.D. Durbin, P.R. Varekamp, J.A. Yarmoff, Phys. Rev. B 47, 15648 (1993).
[54] C.W. Lo, D.K. Shuh, J.A. Yarmoff, J. Vac. Sci. Technol. A 11, 2054 (1993).

Chapter 2
[1] R.A. Powell, Dry Etching for Microelectronics, North-Holland, Amsterdam, 1984.
[2] A.J. van Roosmalen, J.A.G. Baggerman, S.J.H. Brader, Dry Etching for VLSI, Plenum Press, New York, 1991.
[3] H. Ohashi, A. Yoshida, K. Tabayashi, K. Shobatake, Appl. Surf. Sci. 69, 20 (1993).
[4] H. Kyuragi, T. Urisu, Appl. Phys. Lett. 18, 1254 (1987).
[5] T. Urisu, H. Kyuragi, J. Vac. Sci. Technol. B 5, 1436 (1987).
[6] K. Shobatake, H. Ohashi, K. Fukui, A. Hiraya, N. Hayasaka, H. Okano, A. Yoshida, H. Kume, Appl. Phys. Lett. 56, 2189 (1990).
[7] S. Terakado, J. Nishino, M. Morigami, M. Harada, S. Suzuki, K. Tanaka, J. Chikawa, Jpn. J. Appl. Phys. 29, 709 (1990).
[8] Y. Nara, Y. Sugita, N. Nakayama, T. Ito, J. Vac. Sci. Technol. B 10, 274 (1992).
[9] C.-R. Wen, R.A. Rosenberg, Surf. Sci. Lett. 218, L483 (1989).
[10] S.P. Frigo, J.K. Simons, R.A. Rosenberg, J. Chem. Phys. 103, 10356 (1995).
[11] S.P. Frigo, J.K. Simons, R.A. Rosenberg, J. Chem. Phys. 103, 10366 (1995).
[12] T. Urisu, A. Yoshigoe, Y. Imaizumi, Optoelectron., Devices Technol. 11, 57 (1996).
[13] T. Urisu, Proc. SPIE 3331, 342 (1998).
[14] T. Urisu, Rev. Laser Eng. 26, 438 (1998).
[15] C.-R. Wen, L.-C. Chou, J. Chem. Phys. 112, 9068 (2000).
[16] C.-R. Wen, L.-C. Chou, J. Chem. Phys. 120, 11144 (2004).
[17] C.-R. Wen, C.-Y. Jang, L.-C. Chou, J. Chen, Y.-H. Wu, S.-C. Chang, W.-C. Tsai, C.-C. Liu, S.-K. Wang, Y. Shai, J. Chem. Phys. 127, 114704 (2007).
[18] W.-C. Tsai, S.-K. Wang, L.-C. Chou, J. Chen, Y.-H. Wu, H.-C. Chen, C.-R. Wen, Surf. Sci. 604, 1494 (2010).
[19] L.-C. Chou, C.-R. Wen, Phys. Rev. B 73, 195407 (2006).
[20] L.-C. Chou, W.-M. Chuang, W.-C. Tsai, S.-K.Wang, Y.-H.Wu, C.-R.Wen, Appl. Phys. Lett. 91, 144103 (2007).
[21] L.-C. Chou, C.-Y. Jang, Y.-H.Wu, W.-C. Tsai, S.-K.Wang, J. Chen, S.-C. Chang, C.-C. Liu, Y. Shai, C.-R. Wen, J. Chem. Phys. 129, 214104 (2008).
[22] H.W. Jochims, W. Lohr, H. Baumgartel, Ber. Bunsenges. Physik. Chem. 80, 130 (1976).
[23] J.M. Ajello, W.T. Hunteress, Jr., P.Rayermann, J. Chem. Phys. 64, 4746 (1976).
[24] H. Schenk, H. Oertel, H. Baumgartel, Ber. Bunsenges. Physik. Chem. 83, 683 (1979).
[25] W. Zhang, G. Cooper, T. Ibuki, C.E. Brion, Chem. Phys. 151, 357 (1991).
[26] E. Illenberger, H.-U. Scheunemann, H. Baumgartel, Chem. Phys. 37, 21 (1979).
[27] E. Illenberger, Ber. Bunsenges. Phys. Chem. 86, 252 (1982).
[28] L.G. Christophorou, J.K. Olthoff, Y.J. Wang, Phys. Chem. Ref. Data 26, 1205 (1997).
[29] K. Aflatooni, P.D. Burrow, Int. J. Mass Spectrom. 205, 149 (2001).
[30] K. Graupner, S.A. Haughey, T.A. Field, C.A. Mayhew, T.H. Hoffmann, O. May, J. Fedor, M. Allan, I.I. Fabrikant, E. Illenberger, M. Braun, M.-W. Ruf, H. Hotop, J. Phys. Chem. A 114, 1474 (2010).
[31] E. Illenberger, Chem. Rev. 92, 1589 (1992).
[32] J. Langer, S. Matt, M. Meinke, P. Tegeder, A. Stamatovic, E. Illenberger, J. Chem. Phys. 113, 11063 (2000).
[33] N.S. Faradzhev, C.C. Perry, D.O. Kusmierek, D.H. Fairbrother, T.E. Madey, J. Chem. Phys. 121, 8547 (2004).
[34] C.C. Perry, N.S. Faradzhev, D.H. Fairbrother, T.E. Madey, Int. Rev. Phys. Chem. 23, 289 (2004).
[35] S. Solovev, D.O. Kusmierek, T.E. Madey, J. Chem. Phys. 120, 968 (2004).
[36] F.R. McFeely, J.F. Morar, N.D. Shinn, G. Landgren, F.J. Himpsel, Phys. Rev. B 30, 764 (1984).
[37] F.A. Houle, J. Vac. Sci. Technol. B 7, 1149 (1989).
[38] J.A. Yarmoff, A. Taleb-Ibrahimi, F.R. McFeely, Ph. Avouris, Phys. Rev. Lett. 60, 960 (1988).
[39] J.A. Yarmoff, F.R. McFeely, Phys. Rev. B 38, 2057 (1988).
[40] J.A. Yarmoff, S.A. Joyce, J. Vac. Sci. Technol. A 7, 2445 (1989).
[41] J.A. Yarmoff, S.A. Joyce, Phys. Rev. B 40, 3143 (1989).
[42] C.W. Lo, D.K. Shuh, V. Chakarian, T.D. Durbin, P.R. Varekamp, J.A. Yarmoff, Phys. Rev. B 47, 15648 (1993).
[43] C.W. Lo, D.K. Shuh, J.A. Yarmoff, J. Vac. Sci. Technol. A 11, 2054 (1993).
[44] L.-C. Chou, C.-R. Wen, J. Chen, Chin. J. Phys. (Taipei) 38, 987 (2000).
[45] S.-K. Wang, Master thesis, National Cheng Kung University, Taiwan, 2004.
[46] T. Cvitaˇs, H. G’usten, L. Klasinc, J. Chem. Phys. 67, 2687 (1977).
[47] G. Cooper, W. Zhang, C.E. Brion, K.H. Tan, Chem. Phys. 145, 117 (1990).
[48] Y. Shimizu, K. Ueda, H. Chiba, M. Okunishi, K. Ohmori, Y. Stao, I.H. Suzuki, T. Ibuki, K. Okada, Chem. Phys. 244, 439 (1999).
[49] C.-R. Wen, R.A. Rosenberg, J. Vac. Sci. Technol. A 7, 1851 (1989).
[50] W.-C. Tsai, S.-K. Wang, T.-M. He, L.-C. Chou, Y.-C. Hsieh, K.-Y. Liao, H.-C. Chen, C.-R. Wen, J. Chem. Phys. 135, 164704 (2011).
[51] Y.Le Coat, R. Azria, M. Tronc, O. Ing’olfsson, E. Illenberger, Chem. Phys. Lett. 296, 208 (1998).
[52] F. Bruning, P. Tegeder, J. Langer, E. Illenberger, Int. J. Mass Spectrom. 195/196, 507 (2000).
[53] S.-K. Wang, L.-C. Chou, W.-C. Tsai, J. Chen, Y.-H. Wu, C.-R. Wen (in preparation).
[54] J.W. Davenport, W. Ho, J.R. Schrieffer, Phys. Rev. B 17, 3115 (1978).
[55] D.E. Ramaker, Desorption Induced by Electronic Transitions, edited by N.H. Tolk, M.M. Traum, J.C. Tully, and T.E. Madey (Springer, Heidelberg, 1983).
[56] M.L. Knotek, Rep. Prog. Phys. 47, 1499 (1984).
[57] T.E. Madey, D.E. Ramaker, R. Stockbauer, Annu. Rev. Phys. Chem. 35, 215 (1984).

Chapter 3
[1] W. Eberhardt, T. K. Sham, R. Carr, S. Krummacher, M. Strongin, S. L. Wengand D. Wesner, Phys. Rev. Lett. 50, 1038 (1987).
[2] T. Sekitani, E. Ikenaga, K. Fujii, K. Mase, N. Ueno and K. Tanaka, J. Electron. Spectrosc. Relat. Phenom. 101-103, 135 (1999).
[3] K. Tanaka, E. O. Sako, E. Ikenaga, K. Isari, S. A. Sardar, S. Wada, T. Sekitani, K. Mase and N. Ueno, J. Electron. Spectrosc. Relat. Phenom. 119 255 (2001).
[4] S, Wana, R. Sumii, K. Isari, S. Waki, E. O. Sako, T. Sekiguchi, T. Sekitani and K. Tanaka, Surf. Sci. 528 242 (2003).
[5] S. Wada, R. Sumii, H. Kizaki, Y. Iizuka, Y. Matsumoto, T. Sekitani and K. Tanaka, Surf. Sci. 593, 283 (2005).
[6] S. Wada, H. Kizaki, Y. Matsumoto, R. Sumii and K. Tanaka, J. Phys.: Condens. Matter 18, S1629 (2006).
[7] H. Kizaki, Y. Matsumoto, H. Ban, K. Morishita, S. Wada and K. Tanaka, Surf. Sci. 601, 3956 (2007).
[8] R. A. Rosenberg, F. K. Perkins, D. C. Mancini, G. R. Harp, B. P. Tonner, S. Lee and P. A. Dowben, Appl. Phys. Lett. 58, 607 (1991).
[9] F. K. Perkins, R. A. Rosenberg, S. Lee and P. A. Dowben, J. Appl. Phys. 69, 4103 (1991).
[10] K. Shobatake, H. Ohashi, K. Fukui, A. Hiraya, N. Hayasaka, H. Okano, A. Yoshida and H. Kume, Appl. Phys. Lett. 56, 2189 (1990).
[11] S. Terakado, J. Nishino, M. Morigami, M. Harada, S. Suzuki, K. Tanaka and J. Chikawa, Jpn. J. Appl. Phys. Part 2 29, L709 (1990).
[12] Y. Utsumi, J. Takahashi and T. Urisu, J. Vac. Sci. Technol. B 9, 2507 (1991).
[13] S. Terakado, O. Kitamura, S. Suzuki and K. Tanaka, J. Vac. Sci. Technol. B 11, 1890 (1993).
[14] B. Li, I. Twesten and N. Schwentner N, Appl. Phys. A 57, 457 (1993).
[15] B. Li, I. Twesten, H. P. Krause and N. Schwentner, Appl. Phys. Lett. 64, 1635 (1994).
[16] C.-R. Wen and R. A. Rosenberg, Surf. Sci. Lett. 218, L483 (1989).
[17] R. A. Rosenberg, S. P. Frigo and J. K. Simons, Appl. Surf. Sci. 79/80, 47 (1994).
[18] S. P. Frigo, J. K. Simons and R. A. Rosenberg, J. Chem. Phys. 103, 10356 (1995).
[19] S. P. Frigo, J. K. Simons and R. A. Rosenberg, J. Chem. Phys. 103, 10366 (1995).
[20] J. K. Simons, S. P. Frigo, J. W. Taylor and R. A. Rosenberg, Surf. Sci. 346, 21 (1996).
[21] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 112, 9068 (2000).
[22] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 120, 11144 (2004).
[23] L.-C. Chou and C.-R. Wen, Phys. Rev. B 73, 195407 (2006).
[24] C.-R. Wen, C.-Y. Jang, L.-C. Chou, J. Chen, Y.-H. Wu, S.-C. Chang, W.-C. Tsai, C.-C. Liu, S.-K. Wang and Y. Shai, J. Chem. Phys. 127, 114704 (2007).
[25] L.-C. Chou, W.-M. Chuang, W.-C. Tsai, S.-K. Wang, Y.-H. Wu and C.-R. Wen, Appl. Phys. Lett. 91, 144103 (2007).
[26] L.-C. Chou, C.-Y. Jang, Y.-H.Wu, W.-C. Tsai, S.-K.Wang, J. Chen, S.-C. Chang, C.-C. Liu, Y. Shai and C.-R. Wen, J. Chem. Phys. 129, 214104 (2008).
[27] W.-C. Tsai, S.-K. Wang, L.-C. Chou, J. Chen, Y.-H. Wu, H.-C. Chen and C.-R. Wen, Surf. Sci. 604, 1494 (2010).
[28] A. Grigonis, R. Knizikevicius, Z. Rutkuniene and D. Tribandis, Vacuum 70, 319 (2003).
[29] Z. Rutkuniene and A. Grigonis, Vacuum 68, 239 (2003).
[30] A. Grigonis, R. Knizikevicius, Z. Rutkuniene and M. Puceta, Appl. Surf. Sci. 199, 270 (2002).
[31] H. W. Jochims, W. Lohr and H. Baumgartel, Ber. Bunsenges. Physik. Chem. 80, 130 (1976).
[32] J. M. Ajello, W. T. Jr. Hunteress and P. Rayermann, J. Chem. Phys. 64, 4746 (1976).
[33] H. Schenk, H. Oertel and H. Baumgartel, Ber. Bunsenges. Physik. Chem. 83, 683 (1979).
[34] W. Zhang, G. Cooper, T. Ibuki and C. E. Brion, Chem. Phys. 151, 357 (1991).
[35] E. Illenberger, H.-U. Scheunemann and H. Baumgartel, Chem. Phys. 37, 21 (1979).
[36] E. Illenberger, Ber. Bunsenges. Phys. Chem. 86, 252 (1982).
[37] L. G. Christophorou, J. K. Olthoff and Y. J. Wang, Phys. Chem. Ref. Data 26, 1205 (1997).
[38] K. Aflatooni and P. D. Burrow, Int. J. Mass Spectrom. 205, 149 (2001).
[39] K. Graupner, S. A. Haughey, T. A. Field, C. A. Mayhew, T. H. Hoffmann, O. May, J. Fedor, M. Allan, I. I. Fabrikant, E. Illenberger, M. Braun, M.-W. Ruf and H. Hotop, J. Phys. Chem. A 114, 1474 (2010).
[40] E. Illenberger, Chem. Rev. 92, 1589 (1992).
[41] J. Langer, S. Matt, M. Meinke, P. Tegeder, A. Stamatovic and E. Illenberger, J. Chem. Phys. 113, 11063 (2000).
[42] N. S. Faradzhev, C. C. Perry, D. O. Kusmierek, D. H. Fairbrother and T. E. Madey, J. Chem. Phys. 121, 8547 (2004).
[43] C. C. Perry, N. S. Faradzhev, D. H. Fairbrother and T. E. Madey, Int. Rev. Phys. Chem. 23, 289 (2004).
[44] S. Solovev, D. O. Kusmierek and T. E. Madey, J. Chem. Phys. 120, 968 (2004).
[45] L.-C. Chou, C.-R. Wen and J. Chen, Chin. J. Phys. (Taipei) 38, 987 (2000).
[46] S.-K. Wang, Master thesis (Taiwan: National Cheng Kung University) (2004).
[47] J. Stohr, NEXAFS Spectroscopy, Springer Series in Surface Sciences vol 25 (Springer-Verlag) ch. 7 (1992).
[48] A. Bianconi, Appl. Surf. Sci. 6, 392 (1980).
[49] W. Zhang, T. Ibuki and C. E. Brion, Chem. Phys. 160, 435 (1992).
[50] C. E. Brion and A. Hamnett, Advan. Chem. Phys. 45, 1 (1981).
[51] J. W. Gallagher, C. E. Brion, J. A. R. Samson and P. W. Langhoff, J. Phys. Chem. Ref. Data 17, 9 (1988).
[52] Y. Shimizu, K. Ueda, H. Chiba, M. Okunishi, K. Ohmori, Y. Sato, I. H. Suzuki, T. Ibuki and K. Okada, Chem. Phys. 244, 439 (1999).
[53] I. H. Suzuki, N. Saito and J. D. Bozek, J. Electron Spectrosc. Relat. Phenom. 101-103, 69 (1999).
[54] I. H. Suzuki, J. D. Bozek and N. Saito N, Chem. Phys. 182, 81 (1994).
[55] S. A. Holmes, Master Thesis (Oregon: Oregon State University) (1974).
[56] J. A. Yarmoff and S. A. Joyce, J. Vac. Sci. Technol. A 7, 2445 (1989).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊