跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林傳宇
研究生(外文):Chuan-YuLin
論文名稱:奈米元件中隨時變的量子輸運理論
論文名稱(外文):Transient Quantum Transport Theory in Nanoelectronic Devices
指導教授:張為民張為民引用關係
指導教授(外文):Wei-Min Zhang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:63
中文關鍵詞:非平衡態量傳輸理論雜訊譜光子助傳輸效應單電子發射器
外文關鍵詞:Nonequilibrium quantum transportnoise spectrumphoton-assisted transportsingle-electron pumpings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們建立了一個包含初始關聯、隨時變的量子理論,可以用來研究奈米元件中的輸運動力學。這套理論延伸了建立在費曼維儂影響泛函理論和凱爾迪西非平衡態格林函數方法的量子輸運理論到任意的初始態。在本論文所關心的奈米電子元件是由中央島和源極、汲極耦合所組成。我們也得到了包含初始相關聯的時間無迴旋精確主方程,而在這主方程中包含了中央島和庫相互間的反饋效應。我們以量子點耦合到兩個電極作為一個具體的例子,來研究包含了初始關聯的輸運動力學。我們更進一步我們得到電流和電流擾動關聯函數和雜訊譜,使我們可以用來了解奈米電子元件中的特徵和結構組成。最後我們使用這套量子輸運理論來研究在奈米電子元件中隨時間變化的傳輸現象,例如:光子助輸運現象、單電子發射器(電子旋轉式發射器)。

In this thesis, a transient quantum transport theory incorporated with initial correlations is developed to study the transport dynamic in nanoelectronic system. It extends the quantum transport theory based on the Feynman-Vernon influence functional approach and the Keldysh nonequilibirum Green function technique to an arbitrary initial state. The nanoelectronic devices concerned in this thesis consist of the central island coupled to the source and the drain. The
time-convolutionless exact master equation which incorporates with the correlations is also derived, where the back-reactions between the island and the reservoirs are fully taken into account. By using the quantum dot system coupled to two leads as an example, the transport dynamics
incorporated with initial correlations is discussed. Moreover, The fluctuating current-current correlations and the noise spectrum are obtained to understand the intrinsic characteristic and structure of the nanoelectronic devices. At last, the transient quantum transport is applied to study the time-dependent transport phenomena such as the photon-assisted transport and single-electron pumpings and turnstile operations in nanoelectronic devices.
1 Introduction . . . . . . . . . . . . . . . . . . . . . .7
1.1 Nanoelectronics Devices . . . . . . . . . . . . . . . .7
1.2 Non-Equilibrium Quantum Transport . . . . . . . . . . .8
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . .8
2 Transient Quantum Transport . . . . . . . . . . . . . .10
3 Exact Master Equation . . . . . . . . . . . . . . . . .14
4 Transient Quantum Transport Incorporating with Initial Correlations . . . . . 16
4.1 Examples with Different Initial State . . . . . . . . 17
4.1.1 An initially separable state with equilibrium reservoirs . . . . . . . . . . . . 17
4.1.2 An initially separable state with nonequilibrium reservoirs . . . . . . . . . . 20
4.1.3 An initially system-reservoir entangled state . . . 21
4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . 24
5 Transient Fluctuating Current-Current Correlations and Noise Spectrum . . . 26
5.1 Derivation of Fluctuating Current-Current Correlations and Noise Spectrum . . . . . . . . . . . . . . . . . . . .27
5.2 Fluctuating Current-Current Correlations and Noise Spectrum of the Single Level Quantum Dot . . . . . . . . .28
5.3 Time Resolved Current-Current Fluctuation . . . . . . 30
5.4 Frequency Resolved Noise Spectrum . . . . . . . . . . 30
6 Application of Transient Quantum Transport . . . . . . 34
6.1 The General Time-Dependent Transport Theory . . . . . 34
6.2 Photon-Assisted Transport . . . . . . . . . . . . . . 35
6.2.1 Quantum transport in response to the driving field applied on the dot . . .37
6.2.2 Quantum transport in response to the driving field applied on leads . . . 40
6.2.3 Analytic results in the presence of the ac modulation at WBL regime . 42
6.2.4 More about photon-assisted transport . . . . . . . .44
6.3 Transient Electron Turnstile and Pumping Operations . 46
6.3.1 Single electron pumping with a finite bias voltage 48
6.3.2 Single electron pumping without bias voltage . . . 52
7 Conclusion and Perspective . . . . . . . . . . . . . . 58
8 Bibliography . . . . . . . . . . . . . . . . . . . . . 59
[1] C. U. Lei, W. M. Zhang, Annl. Phys. 327, 1408-1433 (2012).
[2] H. T. Tan, W. M. Zhang, and G. X. Li, Phys. Rev. A 83, 062310 (2011).
[3] C. W. J. Beenakker, and H. van Houten, Solid State Physics 44, 1-228 (1991).
[4] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003); T. Fujisawa, T. Hayashi, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Physica E (Amsterdam) 21, 1046 (2004); J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 93, 186802(2004).
[5] Henk W. Ch. Postma, T. Teepen, Z. Yao-, M. Grifoni, and C. Dekker, Science, 293, 76 (2001).
[6] S. Das Sarma, S. Adam, E. H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
[7] M. Buttiker, Phys. Rev. B 46, 12485 (1992).
[8] Y. M. Blanter, M. BÄuttiker, Phys. Rep 336, 1-166 (2000).
[9] M. BÄuttiker, Phys. Rev. B 38, 9375 (1988).
[10] M. BÄuttiker, Phys. Rev. B 41, 7906 (1990).
[11] M. Moskalets and M. Buttiker, Phys. Rev. B 69, 205316 (2004).
[12] O. Entin-Wohlman, A. Aharony, and Y. Levinson, Phys. Rev. B 65, 195411 (2002).
[13] G. Platero and R. Aguado, Physics Reports 395, 1 (2004).
[14] M. Moskalets, and M. Buttiker, Phys. Rev. B 75, 035315 (2007).
[15] J. Schwinger, J. Math. Phys. 2, 407 (1961).
[16] L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
[17] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer Series in Solid-State Sciences vol 123, 1998).
[18] Y. Imry, Introduction to Mesoscopic Physics 2nd edn (Oxford: Oxford University Press, 2002).
[19] N. S. Wingreen, A. P. Jauho and Y. Meir, Phys. Rev. B 48, 8487(1993).
[20] N. S. Wingreen, A. P. Jauho and Y. Meir, Phys. Rev. B 50, 5528(1994).
[21] J. Maciejko, J. Wang, and H. Guo, Phys. Rev B 74, 085324 (2006).
[22] V. Moldoveanu, V. Gudmundsson, and A. Manolescu, Phys. Rev. B 76, 165308 (2007).
[23] Y. Wei, and J. Wang, Phys. Rev. B 79, 195315 (2009).
[24] N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. B 40, 11834 (1989).
[25] L. Arrachea, Phys. Rev. B 72, 125349 (2005).
[26] B. Wang, J. Wang, and H. Guo, Phys. Rev. B 65, 073306 (2002).
[27] R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).
[28] G. W. Ford and R. F. OConnell,Phys. Rev. D 64, 105020 (2001).
[29] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics, Vol. m18 (Springer-Verlag, Berlin, 1993).
[30] M. W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, 235311 (2008).
[31] M. W. Y. Tu, M. T. Lee, and W. M. Zhang, Quant. Info. Proc. 8, 631 (2009).
[32] J. S. Jin, M. T. W. Tu, W. M. Zhang and Y. J. Yan, New J. Phys. 12, 083013 (2010)).
[33] B. L. Hu, J. P. Paz, and Y. H. Zhang, Phys. Rev. D 45, 2843 (1992).
[34] J. J. Halliwell and T. Yu, Phys. Rev. D 53, 2012 (1996).
[35] G. W. Ford and R. F. O'Connell, Phys. Rev. D 64, 105020 (2001).
[36] J. H. An, and W. M. Zhang, Phys. Rev. A 76, 042127 (2007); J. H. An, M. Feng, and W. M. Zhang, Quantum Inf. Comput. 9, 0317 (2009).
[37] H. N. Xiong, W. M. Zhang, X. G. Wang, and M. H. Wu, Phys. Rev. A 82, 012105 (2010).
[38] M. H. Wu, C. U. Lei, W. M. Zhang, and H. N. Xiong, Opt. Express 18, 18407 (2010).
[39] G. M. Nikolopoulos, D. Petrosyan and P. Lambropoulos, J. Phys.: Condens. Matter 16, 4991-5002 (2004).
[40] R. Landauer, Nature (London) 392, 658 (1998).
[41] C. Beenakker and C. Schonenberger, Phys. Today 56(5), 37 (2003).
[42] T. Gramespacher and M. BÄuttiker, Phys. Rev. Lett. 81, 2763 (1998).
[43] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79, 2526 (1997).
[44] F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Phys. Rev. Lett. 90, 067002 (2003).
[45] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); 17, 975 (1962).
[46] E. Onac, F. Balestro, L. H. Willems van Beveren, U. Hartmann, Y. V. Nazarov, and L. P. Kouwenhoven, Phys. Rev. Lett. 96, 176601 (2006).
[47] H. A. Engel and D. Loss, Phys. Rev. Lett. 93, 136602 (2004).
[48] O. Entin-Wohlman, Y. Imry, S. A. Gurvitz, and A. Aharony, Phys. Rev. B 75, 193308 (2007).
[49] E. A. Rothstein, O. Entin-Wohlman, and A. Aharony, Phys. Rev. B 79, 075307 (2009).
[50] C. Flindt, T. Novotny, A. Braggio, M. Sassetti, and A.-P. Jauho, Phys. Rev. Lett. 100, 150601 (2008).
[51] R. Aguado and T. Brandes, Phys. Rev. Lett. 92, 206601 (2004).
[52] L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).
[53] S. W. Kim, Phys. Rev. B 66, 235304 (2002).
[54] M. Moskalets and M. Buttiker, Phys. Rev. B 66, 205320 (2002).
[55] M. Buttiker, J. Phys.: Condens. Matter 5, 9361 (1993); M. Buttiker, H. Thomas, and A. Pretre, Phys. Lett. A 180, 364 (1993).
[56] J. Wang, B. Wang, and H. Guo, Phys. Rev. B 75, 155336 (2007).
[57] Z. Feng, J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 77, 075302 (2008).
[58] P. Samuelsson, E. V. Sukhorukov, and M. BÄuttiker, Phys. Rev. Lett. 91, 157002 (2003).
[59] C. W. J. Beenakker, C. Emary, M. Kindermann, and J. L. van Velsen, Phys. Rev. Lett. 91, 147901 (2003).
[60] P. Samuelsson and M. BÄuttiker, Phys. Rev. B 73, 041305 (2006).
[61] L. Y. Chen, and C. S. Ting, Phys. Rev. B 43, 4534 (1991).
[62] J. Maciejko, J. Wang and H. Guo, Phys. Rev. B 74, 085324 (2006).
[63] L. Muhlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).
[64] T. L. Schmidt, P.Werner, L. Muhlbacher, and A. Komnik, Phys. Rev. B 78, 235110 (2008).
[65] F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev. B 79, 235336 (2009).
[66] A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).
[67] Y. Wei and J. Wang, Phys. Rev. B 79, 195315 (2009).
[68] L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).
[69] W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature (London) 423, 422 (2003).
[70] E. Onac, F. Balestro, L. H. Willems van Beveren, U. Hartmann, Y. V. Nazarov, and L. P. Kouwenhoven, Phys. Rev. Lett. 96, 176601 (2006).
[71] M. Buttiker, J. Phys.: Condens. Matter 5, 9361 (1993); M. Buttiker, H. Thomas, and A. Pretre, Phys. Lett. A 180, 364 (1993).
[72] J. Gabelli, G. Feve, J.-M. Berroir, B. Placais, A. Cavanna, B. Etienne, Y. Jin, and D. C. Glattli, Science 313, 499 (2006).
[73] M. Switkes, C. Marcus, K. Capman, and A. C. Gossard, Science 283, 1905 (1999).
[74] B. Wang, J. Wang, and H. Guo, Phys. Rev. B 65, 073306 (2002).
[75] R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E. Prober, Science 280, 1238 (1998).
[76] G. Platero and R. Aguado, Physics Reports, 395, 1-157 (2004).
[77] L. P. Kouwenhoven, S. Jauhar, J. Orenstein, and P. L. McEuen, Phys. Rev. Lett. 73, 3443 (1994).
[78] P. K. Tien and J. R. Gordon, Phys. Rev. 129, 647 (1963).
[79] J. R. Tucker and M. J. Feldman, Rev. Mod. Phys. 57, 1055 (1985).
[80] P. S. S. Guimaraes, B. J. Keay, J. P. Kaminski, S. J. Allen, Jr., P. F. Hopkins, A. C. Gossard, L. T. Florez, and J.P. Harbison, Phys. Rev. Lett. 70, 3792 (1993).
[81] A. Fujiwara, N. M. Zimmerman, Y. Ono, and Y. Takahashi, Appl. Phys. Lett. 84, 1323 (2004); A. Fujiwara, K. Nishiguchi and Y. Ono, Appl. Phys. Lett. 92, 042102 (2008).
[82] M. D. Blumenthal, B. Kaestner, L. Li, S. Giblin, T. J. B. M. Janssen, M. Pepper, D. Anderson, G. Jones and D. A. Ritchie, Nat. Phys. 3, 343 (2007).
[83] J. P. Pekola, J. J. Vartiainen, M. MÄottÄonen, O.-P. Saira, M. Meschke, and D. V. Averin, Nat. Phys. 4, 120 (2008).
[84] S. P. Giblin, S. J. Wright, J. D. Fletcher, M. Kataoka, M. Pepper, T. J. B. M. Janssen, D. A. Ritchie, C. A. Nicoll, D. Anderson, and G. A. C. Jones, New J. Phys. 12, 073013 (2010).
[85] S. J. Wright, M. D. Blumenthal, M. Pepper, D. Anderson, G. A. C. Jones, C. A. Nicoll, and D. A. Ritchie, Phys. Rev. B. 80, 113303 (2009).
[86] P. W. Brouwer, Phys. Rev. B 58, R10 135 (1998).
[87] S. W. Kim, Phys. Rev. B 66, 235304 (2002).
[88] M. Moskalets and M. Buttiker, Phys. Rev. B 66, 205320 (2002).
[89] C. Y. Lin and W. M. Zhang, Appl. Phys. Lett. 99, 072105 (2011).
[90] V. Gasparian, T. Christen, and M. Buttiker, Phys. Rev. A 54, 4022 (1996).
[91] F. Pellegrini, C. Negri, F. Pistolesi, N. Manini, G. E. Santoro, and E. Tosatti, Phys. Rev. Lett. 107, 060401 (2011).
[92] B. Kaestner, V. Kashcheyevs, S. Amakawa, M. D. Blumenthal, L. Li, T. J. B. M. Janssen, G. Hein, K. Pierz, T. Weimann, U. Siegner, and H. W. Schumacher, Phys. Rev. B 77, 153301 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top